33 research outputs found

    The Intelligent Behavior of Plants

    No full text
    Plants are as adept as animals and humans in reacting effectively to their ever-changing environment. Of necessity, their sessile nature requires specific adaptations, but their cells possess a network-type communication system with emerging properties at the level of the organ or entire plant. The specific adjustments in growth and development of plants can be taken to represent behavior. Their ability to learn from experience and to memorize previous experiences in order to optimize fitness allows effective acclimation to environmental stresses and can be considered a form of intelligence. Intelligent behavior is exemplified by the exceptional versatility of plants to deal with abiotic stresses as well as microbial and insect attack by balancing appropriate defensive reactions

    The Intelligent Behavior of Plants

    No full text
    Plants are as adept as animals and humans in reacting effectively to their ever-changing environment. Of necessity, their sessile nature requires specific adaptations, but their cells possess a network-type communication system with emerging properties at the level of the organ or entire plant. The specific adjustments in growth and development of plants can be taken to represent behavior. Their ability to learn from experience and to memorize previous experiences in order to optimize fitness allows effective acclimation to environmental stresses and can be considered a form of intelligence. Intelligent behavior is exemplified by the exceptional versatility of plants to deal with abiotic stresses as well as microbial and insect attack by balancing appropriate defensive reactions

    Subcellular Localization of Proteases in Developing Leaves of Oats (Avena sativa L.)

    No full text
    The distribution and subcellular localization of the two major proteases present in oat (Avena sativa L. cv Victory) leaves was investigated. Both the acidic protease, active at pH 4.5, and the neutral protease, active at pH 7.5, are soluble enzymes; a few percent of the enzyme activity was ionically bound or loosely associated with organellar structures sedimenting at 1000g. On the average, 16% of the acidic protease could be washed out of the intercellular space of the leaf. Since isolated protoplasts contained correspondingly lower activities as compared to crude leaf extracts, part of the acidic activity is associated with cell walls. No neutral protease activity was recovered in intercellular washing fluid. Of the activities present in protoplasts, the acidic protease was localized in the vacuole, whereas the neutral protease was not. The localization of the acidic protease in vacuoles did not change during leaf development up to an advanced stage of senescence, when more than 50% of the leaf protein had been degraded. These observations indicate that protein degradation during leaf senescence is not due to a redistribution of acidic protease activity from the vacuole to the cytoplasm

    Degradation of Tobacco Pathogenesis-Related Proteins : Evidence for Conserved Mechanisms of Degradation of Pathogenesis-Related Proteins in Plants

    No full text
    Tobacco (Nicotiana tabacum L.) leaves were found to contain an extracellular proteinase that endoproteolytically cleaves tobacco pathogenesis-related (PR) proteins. This proteinase was partially purified from tobacco leaves and characterized as an aspartyl proteinase with a pH optimum around pH 3 and a molecular mass of 36,000 to 40,000 daltons. In vitro, the enzyme cleaved purified tobacco and tomato PR proteins into discrete fragments. The characteristics of this proteinase were similar to pepsin and identical to those displayed by a previously described tomato 37-kilodalton aspartyl proteinase active against tomato PR proteins (I Rodrigo, P Vera, V Conejero [1989] Eur J Biochem 184: 663-669), suggesting that these extracellular proteases could play a role in a conserved mechanism for PR protein turnover in plants
    corecore