9 research outputs found

    Spatiotemporal control and superselectivity in supramolecular polymers using multivalency

    No full text
    Multivalency has an important but poorly understood role in molecular self-organization. We present the noncovalent synthesis of a multicomponent supramolecular polymer in which chemically distinct monomers spontaneously coassemble into a dynamic, functional structure. We show that a multivalent recruiter is able to bind selectively to one subset of monomers (receptors) and trigger their clustering along the self-assembled polymer, behavior that mimics raft formation in cell membranes. This phenomenon is reversible and affords spatiotemporal control over the monomer distribution inside the supramolecular polymer by superselective binding of single-strand DNA to positively charged receptors. Our findings reveal the pivotal role of multivalency in enabling structural order and nonlinear recognition in water-soluble supramolecular polymers, and it offers a design principle for functional, structurally defined supramolecular architectures

    Monosaccharides as versatile units for water-soluble supramolecular polymers

    No full text
    \u3cp\u3eWe introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.\u3c/p\u3

    Impact of the water-compatible periphery on the dynamic and structural properties of benzene-1,3,5-tricarboxamide based amphiphiles

    Get PDF
    \u3cp\u3eThe consequences of using saccharides versus tetra(ethyleneglycol) chains as water-compatible moieties on the morphology and dynamics of supramolecular polymers in aqueous solutions are investigated. The saccharides form many H-bonds with other saccharides within the polymer and with water, increasing the hydration of the fiber and changing its dynamics.\u3c/p\u3

    From supramolecular polymers to hydrogel materials

    No full text
    \u3cp\u3eSupramolecular hydrogels formed by decorating benzene-1,3,5-tricarboxamide (BTA) units with amphiphilic ethylene glycol-based side chains are presented; careful selection of the substituents of the BTAs allows for the tuning of the self-assembly behaviour and hence the mechanical properties of the resultant hydrogel.\u3c/p\u3

    Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    No full text
    \u3cp\u3eThe rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.\u3c/p\u3

    Supramolecular polymerisation in water; Elucidating the role of hydrophobic and hydrogen-bond interactions

    No full text
    \u3cp\u3eUnderstanding the self-assembly of small molecules in water is crucial for the development of responsive, biocompatible soft materials. Here, a family of benzene-1,3,5-tricarboxamide (BTA) derivatives that comprise a BTA moiety connected to an amphiphilic chain is synthesised with the aim to elucidate the role of hydrophobic and hydrogen-bonding interactions in the self-assembly of these BTAs. The amphiphilic chain consists of an alkyl chain with a length of 10, 11, or 12 methylene units, connected to a tetraethylene glycol (at the periphery). The results show that an undecyl spacer is the minimum length required for these BTAs to self-assemble into supramolecular polymers. Interestingly, exchange studies reveal only minor differences in exchange rates between BTAs containing undecyl or dodecyl spacers. Additionally, IR spectroscopy provides the first experimental evidence that hydrogen-bonding is operative and contributes to the stabilisation of the supramolecular polymers in water.\u3c/p\u3

    Effect of H-bonding on order amplification in the growth of a supramolecular polymer in water

    No full text
    \u3cp\u3eWhile a great deal of knowledge on the roles of hydrogen bonding and hydrophobicity in proteins has resulted in the creation of rationally designed and functional peptidic structures, the roles of these forces on purely synthetic supramolecular architectures in water have proven difficult to ascertain. Focusing on a 1,3,5-benzenetricarboxamide (BTA)-based supramolecular polymer, we have designed a molecular modeling strategy to dissect the energetic contributions involved in the self-assembly (electrostatic, hydrophobic, etc.) upon growth of both ordered BTA stacks and random BTA aggregates. Utilizing this set of simulations, we have unraveled the cooperative mechanism for polymer growth, where a critical size must be reached in the aggregates before emergence and amplification of order into the experimentally observed fibers. Furthermore, we have found that the formation of ordered fibers is favored over disordered aggregates solely on the basis of electrostatic interactions. Detailed analysis of the simulation data suggests that H-bonding is a major source of this stabilization energy. Experimental and computational comparison with a newly synthesized 1,3,5-benzenetricarboxyester (BTE) derivative, lacking the ability to form the H-bonding network, demonstrated that this BTE variant is also capable of fiber formation, albeit at a reduced persistence length. This work provides unambiguous evidence for the key 1D driving force of hydrogen bonding in enhancing the persistency of monomer stacking and amplifying the level of order into the growing supramolecular polymer in water. Our computational approach provides an important relationship directly linking the structure of the monomer to the structure and properties of the supramolecular polymer.\u3c/p\u3

    False results caused by solvent impurity in tetrahydrofuran for maldi tof ms analysis of amines

    No full text
    \u3cp\u3eTetrahydrofuran (THF) is one of the most frequently used solvents in the MALDI TOF MS analysis of synthetic compounds. However, it should be used with caution because a trace amount of 4-hydroxybutanal (HBA) might be generated and accumulated in THF during storage. Since only a tiny amount of analytes is required in MALDI MS measurements, a trace amount of HBA might have a significant effect on the MS results. It was found that HBA will quickly react with primary and secondary amino compounds, leading to false results about the sample composition with an extra series of ions with additional mass of 70 Da in between. The formation of HBA can be inhibited by butylated hydroxytoluene (BHT) antioxidant. Therefore, when THF is required as the solvent for sample preparation, it is strongly recommended to use a BHT-stabilized one, at least for the analysis of compounds with amino groups. [Figure not available: see fulltext.]\u3c/p\u3

    Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange

    Get PDF
    \u3cp\u3eNumerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H\u3csub\u3e2\u3c/sub\u3eO to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H\u3csub\u3e2\u3c/sub\u3eO solution with a 100-fold excess of D\u3csub\u3e2\u3c/sub\u3eO. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.\u3c/p\u3
    corecore