91 research outputs found

    Kinin B1 receptor homo-oligomerization is required for receptor trafficking to the cell surface.

    Get PDF
    The kinin B1 receptor (B1R) is a G protein-coupled receptor with pro-inflammatory activity that is latent in healthy tissues but induced by tissue insult. Here, we investigated if B1R homo-oligomerization is a possible mechanism regulating the presentation of this receptor at the level of maturation and trafficking to the cell surface. To this end, we used HEK293 cells stably expressing N-terminal FLAG and HA epitope-tagged wild-type human B1R and an N-terminal receptor fragment, B1stop135, which terminates at the C-terminal end of the third transmembrane domain and has previously been shown to oligomerize with B1R. Receptors were monitored by immunoblotting and immunoprecipitation, receptor function by agonist binding and agonist-promoted phosphoinositide hydrolysis, and receptor trafficking by confocal immunofluorescence microscopy. When expressed alone, B1R is core N-glycosylated and forms oligomers localized intracellularly and on the cell surface. B1stop135 also exists as core N-glycosylated oligomers but is localized exclusively intracellularly. When co-expressed, B1stop135 prevents specifically B1R homo-oligomerization by forming nonfunctional B1R-B1stop135 hetero-oligomers, retains B1R intracellularly at least in part in the endoplasmatic reticulum (ER), increases calnexin binding to the receptor, and increases receptor degradation. We conclude that B1R homo-oligomerization is necessary for B1R maturation and trafficking to the cell surface. Modulating this mechanism may be a novel therapeutic avenue in inflammatory disease

    G protein-coupled Estrogen Receptor 1 (GPER1)/GPR30 Increases ERK1/2 Activity Through PDZ-dependent and -independent Mechanisms

    Get PDF
    G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of Gi/o. Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin (PTX) as well as by wortmannin, but not by AG1478, indicating that Gi/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor (EGFR) transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two Gi/o-mediated mechanisms; a PDZ-dependent apparently constitutive mechanism, and a PDZ-independent G-1-stimulated mechanism

    International Union of Pharmacology. XLV. Classification of the Kinin Receptor Family: from Molecular Mechanisms to Pathophysiological Consequences

    Full text link
    Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development

    The G Protein-Coupled Estrogen Receptor 1 (GPER1/GPR30) Agonist G-1 Regulates Vascular Smooth Muscle Cell Ca Handling.

    Get PDF
    The G protein-coupled estrogen receptor GPER1/GPR30 is implicated in blood pressure regulation but the mechanisms are not identified. Here, we hypothesize that GPER1 controls blood pressure by regulating vascular smooth muscle cell Ca(2+) handling. Treatment with the GPER1 agonist G-1 (in the µM concentration range) acutely reduced spontaneous and synchronous Ca(2+) spike activity in A7r5 vascular smooth muscle cells expressing mRNA for GPER1. Furthermore, G-1 (1 µM) attenuated the thromboxane A2 analogue U46619-stimulated Ca(2+) spike activity but had no effect on the U46619-induced increase in the basal level of Ca(2+). The voltage-sensitive L-type Ca(2+) channel blocker nifedipine (100 nM) reduced Ca(2+) spike activity similar to G-1. Pharmacological, but not physiological, concentrations of the estrogen 17β-estradiol reduced Ca(2+) spike activity. The GPER1 antagonist G-15 blocked G-1-induced downregulation of Ca(2+) spike activity, supporting a GPER1-dependent mechanism. G-1 (1 µM) and nifedipine (100 nM) attenuated the 30-mM KCl-evoked rise in intracellular Ca(2+) concentration, suggesting that G-1 blocks inflow of Ca(2+) via voltage-sensitive Ca(2+) channels. In conclusion, we demonstrate that the GPER1 agonist G-1 regulates vascular smooth muscle cell Ca(2+) handling by lowering Ca(2+) spike activity, suggesting a role for this mechanism in GPER1-mediated control of blood pressure. © 2013 S. Karger AG, Basel

    The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner.

    Get PDF
    The G protein-coupled oestrogen receptor GPER1, also known as GPR30, has been implicated in oestrogen signalling, but the physiological importance of GPER1 is not fully understood. The GPER1 agonist G-1 has become an important tool to assess GPER1-mediated cellular effects. Here, we report that this substance, besides acting via GPER1, affects the microtubule network in endothelial cells. Treatment with G-1 (3 μM) for 24 h reduced DNA synthesis by about 60 % in mouse microvascular endothelial bEnd.3 cells. Treatment with 3 μM G-1 prevented outgrowth of primary endothelial cells from mouse aortic explants embedded in Matrigel. Treatment with G-1 (0.3-3 μM) for 24 h disrupted bEnd.3 cell and HUVEC microtubule structure in a concentration-dependent manner as assessed by laser-scanning confocal immunofluorescence microscopy. G-1-induced (3 μM) disruption of microtubule was observed also after acute (3 and 6 h) treatment and in the presence of the protein synthesis inhibitor cycloheximide. Disruption of microtubules by 3 μM G-1 was observed in aortic smooth muscle cells obtained from both GPER1 knockout and wild-type mice, suggesting that G-1 influences microtubules through a mechanism independent of GPER1. G-1 dose dependently (10-50 μM) stimulated microtubule assembly in vitro. On the other hand, microtubules appeared normal in the presence of 10-50 μM G-1 as determined by electron microscopy. We suggest that G-1-promoted endothelial cell anti-proliferation is due in part to alteration of microtubule organization through a mechanism independent of GPER1. This G-1-promoted mechanism may be used to block unwanted endothelial cell proliferation and angiogenesis such as that observed in, e.g. cancer

    Bradykinin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Bradykinin (or kinin) receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Bradykinin (kinin) Receptors [76]) are activated by the endogenous peptides bradykinin (BK), [des-Arg9]bradykinin, Lys-BK (kallidin), [des-Arg10]kallidin, [Phospho-Ser6]-Bradykinin, T-kinin (Ile-Ser-BK), [Hyp3]bradykinin and Lys-[Hyp3]-bradykinin. Variation in pharmacology and activity of B1 and B2 receptor antagonists at species orthologs has been documented. icatibant (Hoe140, Firazir) is approved in North America and Europe for the treatment of acute attacks of hereditary angioedema

    Bradykinin receptors in GtoPdb v.2021.3

    Get PDF
    Bradykinin (or kinin) receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Bradykinin (kinin) Receptors [91]) are activated by the endogenous peptides bradykinin (BK), [des-Arg9]bradykinin, Lys-BK (kallidin), [des-Arg10]kallidin, [Phospho-Ser6]-Bradykinin, T-kinin (Ile-Ser-BK), [Hyp3]bradykinin and Lys-[Hyp3]-bradykinin. Variation in pharmacology and activity of B1 and B2 receptor antagonists at species orthologs has been documented. icatibant (Hoe140, Firazir) is approved in North America and Europe for the treatment of acute attacks of hereditary angioedema

    Bradykinin receptors in GtoPdb v.2023.1

    Get PDF
    Bradykinin (or kinin) receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Bradykinin (kinin) Receptors [92]) are activated by the endogenous peptides bradykinin (BK), [des-Arg9]bradykinin, Lys-BK (kallidin), [des-Arg10]kallidin, [Phospho-Ser6]-Bradykinin, T-kinin (Ile-Ser-BK), [Hyp3]bradykinin and Lys-[Hyp3]-bradykinin. Variation in pharmacology and activity of B1 and B2 receptor antagonists at species orthologs has been documented. icatibant (Hoe140, Firazir) is approved in North America and Europe for the treatment of acute attacks of hereditary angioedema. Inhibition of bradykinin with icatibant in COVID-19 infection is under clinical evaluation, with trial NCT05407597 expected to complete in mid 2023

    Kinin B 2

    Full text link
    • …
    corecore