1,125 research outputs found
AUV NILM Update
Work on the AUV NILM project has proceeded along two main fronts:
(1) NILM System Development; (2) Diagnostics for Li-Ion Batterie
Conserving Energy with No Watt Left Behind
Facilities managers for industrial and commercial sites want to develop detailed electrical consumption profiles of their electrical and electromechanical loads, including expensive physical plant for heating, ventilation, and air conditioning (HVAC) and equipment for manufacturing and production. This information is essential in order to understand and optimize energy consumption, to detect and solve equipment failures and problems, and to facilitate predictive maintenance of electromechanical loads. As energy costs rise, residential customers are also developing a growing interest in understanding the magnitude and impact of their electrical consumption quickly, easily, and informatively
An In Depth Study into Using EMI Signatures for Appliance Identification
Energy conservation is a key factor towards long term energy sustainability.
Real-time end user energy feedback, using disaggregated electric load
composition, can play a pivotal role in motivating consumers towards energy
conservation. Recent works have explored using high frequency conducted
electromagnetic interference (EMI) on power lines as a single point sensing
parameter for monitoring common home appliances. However, key questions
regarding the reliability and feasibility of using EMI signatures for
non-intrusive load monitoring over multiple appliances across different sensing
paradigms remain unanswered. This work presents some of the key challenges
towards using EMI as a unique and time invariant feature for load
disaggregation. In-depth empirical evaluations of a large number of appliances
in different sensing configurations are carried out, in both laboratory and
real world settings. Insights into the effects of external parameters such as
line impedance, background noise and appliance coupling on the EMI behavior of
an appliance are realized through simulations and measurements. A generic
approach for simulating the EMI behavior of an appliance that can then be used
to do a detailed analysis of real world phenomenology is presented. The
simulation approach is validated with EMI data from a router. Our EMI dataset -
High Frequency EMI Dataset (HFED) is also released
Neural NILM: Deep Neural Networks Applied to Energy Disaggregation
Energy disaggregation estimates appliance-by-appliance electricity
consumption from a single meter that measures the whole home's electricity
demand. Recently, deep neural networks have driven remarkable improvements in
classification performance in neighbouring machine learning fields such as
image classification and automatic speech recognition. In this paper, we adapt
three deep neural network architectures to energy disaggregation: 1) a form of
recurrent neural network called `long short-term memory' (LSTM); 2) denoising
autoencoders; and 3) a network which regresses the start time, end time and
average power demand of each appliance activation. We use seven metrics to test
the performance of these algorithms on real aggregate power data from five
appliances. Tests are performed against a house not seen during training and
against houses seen during training. We find that all three neural nets achieve
better F1 scores (averaged over all five appliances) than either combinatorial
optimisation or factorial hidden Markov models and that our neural net
algorithms generalise well to an unseen house.Comment: To appear in ACM BuildSys'15, November 4--5, 2015, Seou
Surgery groups of the fundamental groups of hyperplane arrangement complements
Using a recent result of Bartels and Lueck (arXiv:0901.0442) we deduce that
the Farrell-Jones Fibered Isomorphism conjecture in L-theory is true for any
group which contains a finite index strongly poly-free normal subgroup, in
particular, for the Artin full braid groups. As a consequence we explicitly
compute the surgery groups of the Artin pure braid groups. This is obtained as
a corollary to a computation of the surgery groups of a more general class of
groups, namely for the fundamental group of the complement of any fiber-type
hyperplane arrangement in the complex n-space.Comment: 11 pages, AMSLATEX file, revised following referee's comments and
suggestions, to appear in Archiv der Mathemati
Relevance of pseudospin symmetry in proton-nucleus scattering
The manifestation of pseudospin-symmetry in proton-nucleus scattering is
discussed. Constraints on the pseudospin-symmetry violating scattering
amplitude are given which require as input cross section and polarization data,
but no measurements of the spin rotation function. Application of these
constraints to p-58Ni and p-208Pb scattering data in the laboratory energy
range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at
lower energies and a weak one at higher energies. Using a schematic model
within the Dirac phenomenology, the role of the Coulomb potential in
proton-nucleus scattering with regard to pseudospin symmetry is studied. Our
results indicate that the existence of pseudospin-symmetry in proton-nucleus
scattering is questionable in the whole energy region considered and that the
violation of this symmetry stems from the long range nature of the Coulomb
interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of
abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of
Fig. 8 and Fig.
Brain-Computer Interfaces, Virtual Reality, and Videogames
Major challenges must be tackled for brain-computer interfaces to mature into an established communications medium for VR applications, which will range from basic neuroscience studies to developing optimal peripherals and mental gamepads and more efficient brain-signal processing techniques
- …