992 research outputs found

    Do resting brain dynamics predict oddball evoked-potential?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP) is still not clear. This study explored the relationship between resting electroencephalography (EEG) and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS) was applied to further examine the spatial pattern revealed by multiple correlations.</p> <p>Results</p> <p>Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain.</p> <p>Conclusions</p> <p>This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.</p

    Gradient Clogging in Depth Filtration

    Full text link
    We investigate clogging in depth filtration, in which a dirty fluid is ``cleaned'' by the trapping of dirt particles within the pore space during flow through a porous medium. This leads to a gradient percolation process which exhibits a power law distribution for the density of trapped particles at downstream distance x from the input. To achieve a non-pathological clogging (percolation) threshold, the system length L should scale no faster than a power of ln w, where w is the width. Non-trivial behavior for the permeability arises only in this extreme anisotropic geometry.Comment: 4 pages, 3 figures, RevTe

    The Influence of Dopamine Receptor D4 Polymorphism on Resting EEG in Healthy Young Females

    Get PDF
    The polymorphism of variable number of tandem repeat (VNTR) in dopamine receptor D4 (DRD4) gene exon III has been linked to various neuro-psychiatric conditions with disinhibition/impulsivity as one of the core features. This study examined the modulatory effects of long-allele variant of DRD4 VNTR on the regional neural activity as well as inter-regional neural interactions in a young female population. Blood sample and resting state eyes-closed EEG signals were collected in 233 healthy females, stratified into two groups by polymerase chain reaction: long-allele carriers (>4- repeat) and non-carriers (<=4-repeat/<=4-repeat). The values of mean power of 18 electrodes and mutual information of 38 channel pairs across theta, alpha, and beta frequencies were analyzed. Our connectivity analysis was based on information theory, which combined Morlet wavelet transform and mutual information calculation. Between-group differences of regional power and connectivity strength were quantified by independent t-test, while between-group differences in global trends were examined by non-parametric analyses. We noticed that DRD4 VNTR long-allele was associated with decreased global connectivity strength (from non-parametric analysis), especially over bi-frontal, biparietal and right fronto-parietal and right fronto-temporal connections (from independent t-tests). The between-group differences in regional power were not robust. Our findings fit with the networks of response inhibition, providing evidence bridging DRD4 long-allele and disinhibition/impulsivity in neuropsychiatric disorders. We suggest future DRD4 studies of imaging genetics incorporate connectivity analysis to unveil its impact on cerebral network

    Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy

    Get PDF
    Background and purpose To recommend contouring methods and atlas of organs at risk (OARs) for nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiotherapy, in order to help reach a consensus on interpretations of OARs delineation. Methods and materials Two to four contouring methods for the middle ear, inner ear, temporal lobe, parotid gland and spinal cord were identified via systematic literature review; their volumes and dosimetric parameters were compared in 41 patients. Areas under the receiver operating characteristic curves for temporal lobe contouring were compared in 21 patients with unilateral temporal lobe necrosis (TLN). Results Various contouring methods for the temporal lobe, middle ear, inner ear, parotid gland and spinal cord lead to different volumes and dosimetric parameters (P < 0.05). For TLN, D1 of PRV was the most relevant dosimetric parameter and 64 Gy was the critical point. We suggest contouring for the temporal lobe, middle ear, inner ear, parotid gland and spinal cord. A CT-MRI fusion atlas comprising 33 OARs was developed. Conclusions Different dosimetric parameters may hinder the dosimetric research. The present recommendation and atlas, may help reach a consensus on subjective interpretation of OARs delineation to reduce inter-institutional differences in NPC patients. © 2013 Elsevier Ireland Ltd. All rights reserved.published_or_final_versio

    Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes

    Full text link
    On the basis of the spin-polarized density functional theory calculations, we demonstrate that partially-open carbon nanotubes (CNTs) observed in recent experiments have rich electronic and magnetic properties which depend on the degree of the opening. A partially-open armchair CNT is converted from a metal to a semiconductor, and then to a spin-polarized semiconductor by increasing the length of the opening on the wall. Spin-polarized states become increasingly more stable than nonmagnetic states as the length of the opening is further increased. In addition, external electric fields or chemical modifications are usable to control the electronic and magnetic properties of the system. We show that half-metallicity may be achieved and the spin current may be controlled by external electric fields or by asymmetric functionalization of the edges of the opening. Our findings suggest that partially-open CNTs may offer unique opportunities for the future development of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So

    Anti-Cocaine Compositions and Treatment

    Get PDF
    Embodiments of the invention disclosed herein generally relate to anti-cocaine therapeutics. Specifically, some embodiments of the invention relate to highly efficient, thermostable, and long-lasting cocaine esterase (CocE) mutants that can protect against the toxic and reinforcing effects of cocaine in subjects. Provided herein are mutant CocE polypeptides displaying thermostable esterase activity. Also provided are methods of treating cocaine-induced conditions in a subject in need via administration of mutant CocE as well as methods for high-throughput screening of candidate esterase polypeptides

    Quasiparticle spin susceptibility in heavy-fermion superconductors : An NMR study compared with specific heat results

    Full text link
    Quasi-particle spin susceptibility (χqp\chi^{qp}) for various heavy-fermion (HF) superconductors are discussed on the basis of the experimental results of electronic specific heat (γel\gamma_{el}), NMR Knight shift (KK) and NMR relaxation rate (1/T11/T_1) within the framework of the Fermi liquid model for a Kramers doublet crystal electric field (CEF) ground state. χγqp\chi^{qp}_{\gamma} is calculated from the enhanced Sommerfeld coefficient γel\gamma_{el} and χT1qp\chi^{qp}_{T_1} from the quasi-particle Korringa relation T1T(KT1qp)2=const.T_1T(K^{qp}_{T_1})^2=const. via the relation of χT1qp=(NAμB/Ahf)KT1qp\chi^{qp}_{T_1}=(N_A\mu_B/A_{hf})K^{qp}_{T_1} where AhfA_{hf} is the hyperfine coupling constant, NAN_A the Abogadoro's number and μB\mu_B the Bohr magneton. For the even-parity (spin-singlet) superconductors CeCu2_2Si2_2, CeCoIn5_5 and UPd2_2Al3_3, the fractional decrease in the Knight shift, δKobs\delta K^{obs}, below the superconducting transition temperature (TcT_c) is due to the decrease of the spin susceptibility of heavy quasi-particle estimated consistently from χγqp\chi^{qp}_{\gamma} and χT1qp\chi^{qp}_{T_1}. This result allows us to conclude that the heavy quasi-particles form the spin-singlet Cooper pairs in CeCu2_2Si2_2, CeCoIn5_5 and UPd2_2Al3_3. On the other hand, no reduction in the Knight shift is observed in UPt3_3 and UNi2_2Al3_3, nevertheless the estimated values of χγqp\chi^{qp}_{\gamma} and χT1qp\chi^{qp}_{T_1} are large enough to be probed experimentally. The odd-parity superconductivity is therefore concluded in these compounds. The NMR result provides a convincing way to classify the HF superconductors into either even- or odd- parity paring together with the identification for the gap structure, as long as the system has Kramers degeneracy.Comment: 11 pages, 3 tables, 5 figures, RevTex4(LaTex2e
    corecore