12,000 research outputs found

    The Chalker-Coddington Network Model is Quantum Critical

    Full text link
    We show that the localization transition in the integer quantum Hall effect as described by the Chalker-Coddington network model is quantum critical. We first map the anisotropic network model to the problem of diagonalizing a one-dimensional non-Hermitian non-compact supersymmetric lattice Hamiltonian of interacting bosons and fermions. Its behavior is investigated numerically using the density matrix renormalization group method, and critical behavior is found at the plateau transition. This result is confirmed by an exact, analytic, generalization of the Lieb-Schultz-Mattis theorem.Comment: Version accepted for publication in PRL. 4 pages, 2 eps figure

    Stripe State in the Lowest Landau Level

    Full text link
    The stripe state in the lowest Landau level is studied by the density matrix renormalization group (DMRG) method. The ground state energy and pair correlation functions are systematically calculated for various pseudopotentials in the lowest Landau level. We show that the stripe state in the lowest Landau level is realized only in a system whose width perpendicular to the two-dimensional electron layer is smaller than the order of magnetic length.Comment: 4 pages, 6 figures, to appear in J. Phys. Soc. Jpn. vol.73 No.1 (2004

    Mott Transition in the Two-Dimensional Flux Phase

    Full text link
    Effects of the electron-electron interaction in the two-dimensional flux phase are investigated. We treat the half-filled Hubbard model with a magnetic flux π\pi per plaquette by the quantum Monte Carlo method. When the interaction is small, an antiferromagnetic long-range does not exist and the charge fluctuation is different from that of the Mott insulator It suggests that the Mott transition occurs at finite strength of the interaction in the flux phase, which is in contrast to the standard Hubbard model.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Landau mapping and Fermi liquid parameters of the 2D t-J model

    Get PDF
    We study the momentum distribution function n(k) in the 2D t-J model on small clusters by exact diagonalization. We show that n(k) can be decomposed systematically into two components with Bosonic and Fermionic doping dependence. The Bosonic component originates from the incoherent motion of holes and has no significance for the low energy physics. For the Fermionic component we exlicitely perform the one-to-one Landau mapping between the low lying eigenstates of the t-J model clusters and those of an equivalent system of spin-1/2 quasiparticles. This mapping allows to extract the quasiparticle dispersion, statistics, and Landau parameters. The results show conclusively that the 2D t-J model for small doping is a Fermi liquid with a `small' Fermi surface and a moderately strong attractive interaction between the quasiparticles.Comment: Revtex file, 5 pages with 5 embedded eps-files, hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    The one-dimensional contact process: duality and renormalisation

    Full text link
    We study the one-dimensional contact process in its quantum version using a recently proposed real space renormalisation technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates which are comparable in accuracy with the best known in the literature.Comment: 15 page

    Orthogonality catastrophe in a one-dimensional system of correlated electrons

    Full text link
    We present a detailed numerical study of the orthogonality catastrophe exponent for a one-dimensional lattice model of spinless fermions with nearest neighbor interaction using the density matrix remormalization group algorithm. Keeping up to 1200 states per block we achieve a very great accuracy for the overlap which is needed to extract the orthogonality exponent reliably. We discuss the behavior of the exponent for three different kinds of a localized impurity. For comparison we also discuss the non-interacting case. In the weak impurity limit our results for the overlap confirm scaling behavior expected from perturbation theory and renormalization group calculations. In particular we find that a weak backward scattering component of the orthogonality exponent scales to zero for attractive interaction. In the strong impurity limit and for repulsive interaction we demonstrate that the orthogonality exponent cannot be extracted from the overlap for systems with up to 100 sites, due to finite size effects. This is in contradiction to an earlier interpretation given by Qin et al. based on numerical data for much smaller system sizes. Neverthless we find indirect evidence that the backward scattering contribution to the exponent scales to 1/16 based on predictions of boundary conformal field theory.Comment: 16 pages, Latex, 8 eps figures, submitted to Phys. Rev.

    Eulerian simulation of the fluid dynamics of helicopter brownout

    Get PDF
    A computational model is presented that can be used to simulate the development of the dust cloud that can be entrained into the air when a helicopter is operated close to the ground in desert or dusty conditions. The physics of this problem, and the associated pathological condition known as ‘brownout’ where the pilot loses situational awareness as a result of his vision being occluded by dust suspended in the flow around the helicopter, is acknowledged to be very complex. The approach advocated here involves an approximation to the full dynamics of the coupled particulate-air system. Away from the ground, the model assumes that the suspended particles remain in near equilibrium under the action of aerodynamic forces. Close to the ground, this model is replaced by an algebraic sublayer model for the saltation and entrainment process. The origin of the model in the statistical mechanics of a distribution of particles governed by aerodynamic forces allows the validity of the method to be evaluated in context by comparing the physical properties of the suspended particulates to the local properties of the flow field surrounding the helicopter. The model applies in the Eulerian frame of reference of most conventional Computational Fluid Dynamics codes and has been coupled with Brown’s Vorticity Transport Model. Verification of the predictions of the coupled model against experimental data for particulate entrainment and transport in the flow around a model rotor are encouraging. An application of the coupled model to analyzing the differences in the geometry and extent of the dust clouds that are produced by single main rotor and tandem-rotor configurations as they decelerate to land has shown that the location of the ground vortex and the size of any regions of recirculatory flow, should they exist, play a primary role in governing the extent of the dust cloud that is created by the helicopter

    Low Energy Effective Action of Lightly Doped Two-Leg t-J Ladders

    Full text link
    We propose a low energy effective theory of lightly doped two-leg t-J ladders with the help of slave fermion technique. The continuum limit of this model consists of two kinds of Dirac fermions which are coupled to the O(3) non-linear sigma model in terms of the gauge coupling with opposite sign of "charges". In addition to the gauge interaction, there is another kind of attractive force between these Dirac fermions, which arises from the short-ranged antiferromagnetic order. We show that the latter is essential to determine the low energy properties of lightly doped two-leg t-J ladders. The effective Hamiltonian we obtain is a bosonic Gaussian model and the boson field basically describes the particle density fluctuation. We also find two types of gapped spin excitations. Finally, we discuss the possible instabilities: charge density wave (CDW) and singlet superconductivity (SC). We find that the SC instability dominates in our approximation. Our results indicate that lightly doped ladders fall into the universality class of Luther-Emery model.Comment: 16 pages, Revtex, no figure

    Iron bioavailability in two commercial cultivars of wheat: a comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells

    Get PDF
    Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants

    The Principle of Valence Bond Amplitude Maximization in Cuprates: How it breeds Superconductivity, Spin and Charge Orders

    Full text link
    A simple microscopic principle of `Valence bond (nearest neighbor singlet) amplitude maximization '(VBAM) is shown to be present in undoped and optimally doped cuprates and unify the very different orderings such as antiferromagnetism in the Mott insulator and the robust superconductivity accompanied by an enhanced charge and stripe correlations in the optimally doped cuprates. VBAM is nearly synonymous with the energy minimization principle. It is implicit in the RVB theory and thereby makes the predictions of RVB mean field theory of superconductivity qualitatively correct.Comment: 4 pages, RevTe
    • 

    corecore