244 research outputs found

    Entanglement of three-qubit pure states in terms of teleportation capability

    Full text link
    We define an entanglement measure, called the partial tangle, which represents the residual two-qubit entanglement of a three-qubit pure state. By its explicit calculations for three-qubit pure states, we show that the partial tangle is closely related to the faithfulness of a teleportation scheme over a three-qubit pure state.Comment: 4 pages, 1 figure, accepted for publication as a Brief Report in Physical Review

    Teleportation capability, distillability, and nonlocality on three-qubit states

    Get PDF
    In this paper, we consider teleportation capability, distillability, and nonlocality on three-qubit states. In order to investigate some relations among them, we first find the explicit formulas of the quantities about the maximal teleportation fidelity on three-qubit states. We show that if any three-qubit state is useful for three-qubit teleportation then the three-qubit state is distillable into a Greenberger-Horne-Zeilinger state, and that if any three-qubit state violates a specific form of Mermin inequality then the three-qubit state is useful for three-qubit teleportation.Comment: 5 pages, 2 figures; The old version has been generalized into the results on general 3-qubit state

    Concurrence of assistance and Mermin inequality on three-qubit pure states

    Full text link
    We study a relation between the concurrence of assistance and the Mermin inequality on three-qubit pure states. We find that if a given three-qubit pure state has the minimal concurrence of assistance greater than 1/2 then the state violates some Mermin inequality.Comment: 4 pages, 1 figur

    Generic Bell inequalities for multipartite arbitrary dimensional systems

    Full text link
    We present generic Bell inequalities for multipartite multi-dimensional systems. The inequalities that any local realistic theories must obey are violated by quantum mechanics for even-dimensional multipartite systems. A large set of variants are shown to naturally emerge from the generic Bell inequalities. We discuss particular variants of Bell inequalities, that are violated for all the systems including odd-dimensional systems.Comment: Accepted in Phys. Rev. Let

    Quantum states for perfectly secure secret sharing

    Full text link
    In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, and hence the states could be distillable into the Greenberger-Horne-Zeilinger state. We finally exhibit a class of secret-sharing states, which have an arbitrarily small amount of bipartite distillable entanglement for a certain split.Comment: 4 page

    P-glycoproteins encoded by mdr 1b in murine gravid uterus and multidrug resistant tumor cell lines are differentially glycosylated

    Get PDF
    AbstractThere are 3 members of the multidrug-resitance gene family expressed in mouse. Only one of these, mdr lb, and its gene product P-glycoprotein are induced to high levels in the mouse endometrium during pregnancy. It is shown here that P-glycoprotein in the gravid uterus is significantly larger (Mr 155000) compared to P-glycoprotein encoded by mdr lb in a murine multidrug-resistant cell line (Mr 140000). However, both species co-migrate after enzymatic removal of N-linked sugars (Mr 125000). These results demonstrate that differential glycosylation of the mdr lb gene product contributes to molecular heterogeneity found in P-glycoprotein from normal and multidrug-resistant cells

    Creation of NOON states by double Fock-state/Bose-Einstein condensates

    Full text link
    NOON states (states of the form N>a0>b+0>aN>b|N>_{a}|0>_{b}+|0>_{a}|N>_{b} where aa and bb are single particle states) have been used for predicting violations of hidden-variable theories (Greenberger-Horne-Zeilinger violations) and are valuable in metrology for precision measurements of phase at the Heisenberg limit. We show theoretically how the use of two Fock state/Bose-Einstein condensates as sources in a modified Mach Zender interferometer can lead to the creation of the NOON state in which aa and bb refer to arms of the interferometer and NN is the total number of particles in the two condensates. The modification of the interferometer involves making conditional ``side'' measurements of a few particles near the sources. These measurements put the remaining particles in a superposition of two phase states, which are converted into NOON states by a beam splitter. The result is equivalent to the quantum experiment in which a large molecule passes through two slits. The NOON states are combined in a final beam splitter and show interference. Attempts to detect through which ``slit'' the condensates passed destroys the interference.Comment: 8 pages 5 figure

    Generation of Three-Qubit Entangled W-State by Nonlinear Optical State Truncation

    Get PDF
    We propose an alternative scheme to generate W state via optical state truncation using quantum scissors. In particular, these states may be generated through three-mode optical state truncation in a Kerr nonlinear coupler. The more general three-qubit state may be also produced if the system is driven by external classical fields.Comment: 7 pages, 2 figur

    Quantum teleportation via a W state

    Full text link
    We investigate two schemes of the quantum teleportation with a WW state, which belongs to a different class from a Greenberger-Horne-Zeilinger class. In the first scheme, the WW state is shared by three parties one of whom, called a sender, performs a Bell measurement. It is shown that quantum information of an unknown state is split between two parties and recovered with a certain probability. In the second scheme, a sender takes two particles of the WW state and performs positive operator valued measurements in two ways. For two schemes, we calculate the success probability and the average fidelity. We show that the average fidelity of the second scheme cannot exceed that of the first one.Comment: 7 pages, 1 figur

    Multipartite entanglement for entanglement teleportation

    Full text link
    The scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under arbitrary two-qubit unitary transformation, we derive relations of separabilities for joint measurements at a sending station and for unitary operations at a receiving station. From the relations of separabilities it is found that an inseparable quantum channel always leads to a total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.Comment: slightly modifie
    corecore