25,785 research outputs found

    Deep levels and radiation effects in p-InP

    Get PDF
    A survey was conducted on past studies of hole traps in InP. An experiment was designed to evaluate hole traps in Zn-doped InP after fabrication, after electron irradiation and after annealing using deep level transient spectroscopy. Data similar to that of Yamaguchi was seen with observation of both radiation-induced hole and electron traps at E sub A=0.45 eV and 0.03 eV, respectively. Both traps are altered by annealing. It is also shown that trap parameters for surface-barrier devices are influenced by many factors such as bias voltage, which probes traps at different depths below the surface. These devices require great care in data evaluation

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors (An electronic Raman scattering study)

    Full text link
    For YBa_2Cu_3O_{6+\delta} and Bi_2Sr_2CaCu_2O_8 superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c the system exhibits a sharp Raman resonance of B_1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 5 pages, 4 EPS figures; SNS'97 Proceedings to appear in J. Phys. Chem. Solid

    Frustration-induced Dodecamer Ordering in the Double-Exchange Spin Ice Model on the Kagom\'e Lattice

    Full text link
    We investigate a detail of a dodecamer cluster ordering in a double-exchange spin ice model on a kagom\'e lattice. In frustrated systems, ordinary spin orderings are suppressed and macroscopic degeneracy remains down to low temperatures. In some frustrated systems, the degeneracy is lifted due to residual interactions and cluster orderings are stabilized. In the present model, the spin ice state is first formed at intermediate temperatures, and further entropies are released at lower temperatures as the dodecamer phase emerges. Since the spin symmetry is not broken in the dodecamer phase, there still exists macroscopic degeneracy. At further low temperatures, a possible spin ordering due to inter-dodecamer interactions is proposed. We discuss that such a multiple-site clustering larger than a bond-pair might be generic to frustrated systems where macroscopic degeneracy is lifted by residual interactions.Comment: 18 pages, 11 figure

    Bose-Einstein Condensation of Atoms in a Trap

    Full text link
    We point out that the local density approximation (LDA) of Oliva is an adaptation of the Thomas-Fermi method, and is a good approximation when ε=ω/kT0\varepsilon = \hbar\omega/kT 0, the LDA leads to a quantitative result (14') easily checked by experiments. Critical remarks are made about the physics of the many body problem in terms of the scattering length aa.Comment: 9 pages, latex. one figure, available from author

    Novel Synthesis and High Pressure Behavior of Na0.3CoO2 x 1.3 H2O and Related Phases

    Full text link
    We have prepared powder samples of NaxCoO2 x yH2O using a new synthesis route. Superconductivity was observed in Na0.3CoO2 x 1.3H2O between 4 and 5K as indicated by the magnetic susceptibility. The bulk compressibilities of Na0.3CoO2 x 1.3H2O, Na0.3CoO2 x 0.6H2O and Na0.3CoO2 were determined using a diamond anvil cell and synchrotron powder diffraction. Chemical changes occurring under pressure when using different pressure transmitting media are discussed and further transport measurements are advocated.Comment: 7 pages, 4 figures, PRrapid submitte

    Testing the diffusion hypothesis as a mechanism of self-healing in Disperse orange 11 doped in PMMA

    Full text link
    In this work, we show that reversible photodegradation of Disperse Orange 11 doped in PMMA is not due to dye diffusion - a common phenomenon observed in many dye-doped polymers. The change in linear absorbance due to photodegradation of the material shows an isobestic point, which is consistent with the formation of a quasi-stable damaged species. Spatially-resolved amplified spontaneous emission and fluorescence, both related to the population density, are measured by scanning the pump beam over a burn mark. A numerical model of the time evolution of the population density due to diffusion is inconsistent with the experimental data suggesting that diffusion is not responsible.Comment: 5 pages, 6 figure

    Superconductivity in CoO2_2 Layers and the Resonating Valence Bond Mean Field Theory of the Triangular Lattice t-J model

    Get PDF
    Motivated by the recent discovery of superconductivity in two dimensional CoO2_2 layers, we present some possibly useful results of the RVB mean field theory applied to the triangular lattice. Away from half filling, the order parameter is found to be complex, and yields a fully gapped quasiparticle spectrum. The sign of the hopping plays a crucial role in the analysis, and we find that superconductivity is as fragile for one sign as it is robust for the other. Nax_xCoO2y_2\cdot yH2_2O is argued to belong to the robust case, by comparing the LDA Fermi surface with an effective tight binding model. The high frequency Hall constant in this system is potentially interesting, since it is pointed out to increase linearly with temperature without saturation for T >> Tdegeneracy_{degeneracy}.Comment: Published in Physical Review B, total 1 tex + 9 eps files. Erratum added as separate tex file on November 7, 2003, a numerical factor corrected in the erratum on Dec 3, 200

    First and Second Sound Modes of a Bose-Einstein Condensate in a Harmonic Trap

    Full text link
    We have calculated the first and second sound modes of a dilute interacting Bose gas in a spherical trap for temperatures (0.6<T/Tc<1.20.6<T/T_{c}<1.2) and for systems with 10410^4 to 10810^8 particles. The second sound modes (which exist only below TcT_{c}) generally have a stronger temperature dependence than the first sound modes. The puzzling temperature variations of the sound modes near TcT_{c} recently observed at JILA in systems with 10310^3 particles match surprisingly well with those of the first and second sound modes of much larger systems.Comment: a shorten version, more discussions are given on the nature of the second sound. A long footnote on the recent work of Zaremba, Griffin, and Nikuni (cond-mat/9705134) is added, the spectrum of the (\ell=1, n_2=0) mode is included in fig.

    Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2

    Full text link
    A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S = 1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating valence bond (RVB) state in which every pair of neighboring quantum spins form entangled spin singlets (valence bonds) and the singlets are quantum mechanically resonating amongst all the possible highly degenerate pairing states. Here we provide experimental evidence for such quantum paramagnetic states existing in frustrated antiferromagnets, ZnxCu4-x(OD)6Cl2, where the S = 1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu4(OD)6Cl2, where distorted kagome planes are weakly coupled to each other, a dispersionless excitation mode appears in the magnetic excitation spectrum below ~ 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence bond solid (VBS), that breaks translational symmetry. Doping nonmagnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The VBS state is suppressed and for ZnCu3(OD)6Cl2 where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low energy spin fluctuations in the spin liquid phase become featureless
    corecore