71,561 research outputs found

    Study of the triangular lattice tV model near x=1/3

    Get PDF
    We study extended Hubbard model on a triangular lattice near doping x=1/3x=1/3, which may be relevant for the recently discovered superconductor Nax_xCoO2y_2 \cdot yH2_2O. By generalizing this model to NN fermionic species, we formulate a meanfield description in the limit of large NN. In meanfield, we find two possible phases: a renormalized Fermi liquid and a \rt3rt3 charge density wave state. The transition between the two phases is driven by increasing the nearest neighbor repulsion and is found to be first order for doping x=1/3x=1/3, but occurs close to the point of the local instability of the uniform liquid. We also study fluctuations about the uniform meanfield state in a systematic 1/N expansion, focusing on the residual interaction of quasiparticles and possible superconducting instabilities due to this interaction. Upon moving towards the CDW instability, the increasing charge fluctuations favor a particular ff-wave triplet state. (This state was recently discussed by Tanakaet al, cond-mat/0311266). We also report a direct Gutzwiller wavefunction study of the spin-1/2 model.Comment: 9 pages, 5 figure

    Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    Get PDF
    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper

    Influences of an impurity on the transport properties of one-dimensional antisymmetric spin filter

    Full text link
    The influences of an impurity on the spin and the charge transport of one-dimensional antisymmetric spin filter are investigated using bosonization and Keldysh formulation and the results are highlighted against those of spinful Luttinger liquids. Due to the dependence of the electron spin orientation on wave number the spin transport is not affected by the impurity, while the charge transport is essentially identical with that of spinless one-dimensional Luttinger liquid.Comment: 7 pages, 2 figures. To appear in Physical Review

    Phase diagram of the three band half-filled Cu-O two-leg ladder

    Get PDF
    We determine the phase diagram of the half-filled two-leg ladder both at weak and strong coupling, taking into account the Cu d_{x^2-y^2} and the O p_x and p_y orbitals. At weak coupling, renormalization group flows are interpreted with the use of bosonization. Two different models with and without outer oxygen orbitals are examined. For physical parameters, and in the absence of the outer oxygen orbitals, the D-Mott phase arises; a dimerized phase appears when the outer oxygen atoms are included. We show that the circulating current phase that preserves translational symmetry does not appear at weak coupling. In the opposite strong-coupling atomic limit the model is purely electrostatic and the ground states may be found by simple energy minimization. The phase diagram so obtained is compared to the weak-coupling one.Comment: 10 pages, 5 figures, Version accepted for publication in PR

    Collective excitation of quantum wires and effect of spin-orbit coupling in the presence of a magnetic field along the wire

    Full text link
    The band structure of a quantum wire with the Rashba spin-orbit coupling develops a pseudogap in the presence of a magnetic field along the wire. In such a system spin mixing at the Fermi wavevectors kF-k_F and kFk_F can be different. We have investigated theoretically the collective mode of this system, and found that the velocity of this collective excitation depends sensitively on the strength of the Rashba spin-orbit interaction and magnetic field. Our result suggests that the strength of the spin-orbit interaction can be determined from the measurement of the velocity.Comment: RevTeX 4 file, 4pages, 6 eps figures. To appear in Physical Review

    Josephson current in strongly correlated double quantum dots

    Get PDF
    We study the transport properties of a serial double quantum dot (DQD) coupled to two superconducting leads, focusing on the Josephson current through the DQD and the associated 0-π\pi transitions which result from the subtle interplay between the superconductivity, the Kondo physics, and the inter-dot superexchange interaction. We examine the competition between the superconductivity and the Kondo physics by tuning the relative strength Δ/TK\Delta/T_K of the superconducting gap Δ\Delta and the Kondo temperature TKT_K, for different strengths of the superexchange coupling determined by the interdot tunneling tt relative to the dot level broadening Γ\Gamma. We find strong renormalization of tt, a significant role of the superexchange coupling JJ, and a rich phase diagram of the 0 and π\pi-junction regimes. In particular, when both the superconductivity and the exchange interaction are in close competion with the Kondo physics (ΔJTK\Delta\sim J\sim T_K), there appears an island of π\pi'-phase at large values of the superconducting phase difference.Comment: 4 pages, 4 figure
    corecore