7,298 research outputs found
Recommended from our members
Manufacturing Mechatronics Using Thermal Spray Shape Deposition
A new technology for manufacturing mechatronics is described. The technique is based on recursive
masking and deposition of thermally sprayed materials. Using these methods, mechanical structures
can be created that embed and interconnect electronic components. This results in highly integrated
mechatronic devices. A simple, electromechanical artifact was designed and produced to assess the
feasibility of these techniques. The details and limitations of this project will be discussed. Areas of
future research are identified which are aimed at realizing the full potential of this emerging manufacturing
process.Mechanical Engineerin
Influences of an impurity on the transport properties of one-dimensional antisymmetric spin filter
The influences of an impurity on the spin and the charge transport of
one-dimensional antisymmetric spin filter are investigated using bosonization
and Keldysh formulation and the results are highlighted against those of
spinful Luttinger liquids. Due to the dependence of the electron spin
orientation on wave number the spin transport is not affected by the impurity,
while the charge transport is essentially identical with that of spinless
one-dimensional Luttinger liquid.Comment: 7 pages, 2 figures. To appear in Physical Review
Transmittance and reflectance measurements at terahertz frequencies on a superconducting BaFe_{1.84}Co_{0.16}As_2 ultrathin film: an analysis of the optical gaps in the Co-doped BaFe_2As_2 pnictide
Here we report an optical investigation in the terahertz region of a 40 nm
ultrathin BaFeCoAs superconducting film with
superconducting transition temperature T = 17.5 K. A detailed analysis of
the combined reflectance and transmittance measurements showed that the optical
properties of the superconducting system can be described in terms of a
two-band, two-gap model. The zero temperature value of the large gap
, which seems to follow a BCS-like behavior, results to be
(0) = 17 cm. For the small gap, for which (0) = 8
cm, the temperature dependence cannot be clearly established. These gap
values and those reported in the literature for the BaFeCoAs
system by using infrared spectroscopy, when put together as a function of
T, show a tendency to cluster along two main curves, providing a unified
perspective of the measured optical gaps. Below a temperature around 20 K, the
gap-sizes as a function of T seem to have a BCS-like linear behavior, but
with different slopes. Above this temperature, both gaps show different
supra-linear behaviors
Conductance asymmetry in point-contacts on epitaxial thin films of Ba(FeCo)As
Point-contact spectroscopy is a powerful tool for probing superconductors.
One of the most common observations in the point-contact spectra on the
recently discovered ferropnictide superconductors is a large conductance
asymmetry with respect to voltage across the point-contact. In this paper we
show that the antisymmetric part of the point-contact spectrum between a silver
tip and an epitaxial thin film of Ba(FeCo)As shows
certain unique features. These features have an interesting evolution with
increasing temperature up to a temperature that is 30% larger than the critical
temperature of the superconductor. We argue that this evolution can be
associated with the rich normal state properties of these materials.Comment: 4 pages, 2 figure
Electrodynamics of superconducting pnictide superlattices
It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013)
that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting
pnictide are intercalated with non superconducting ultrathin layers of either
SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby
increasing critical fields and currents, without significantly affecting the
critical temperature of the pristine superconducting material. However, little
is known about the electron properties of these systems. Here we investigate
the electrodynamics of these superconducting pnictide superlattices in the
normal and superconducting state by using infrared reflectivity, from THz to
visible range. We find that multi-gap structure of these superlattices is
preserved, whereas some significant changes are observed in their electronic
structure with respect to those of the original pnictide. Our results suggest
that possible attempts to further increase the flux pinning may lead to a
breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure
Life and Death at the Edge of a Windy Cliff
The survival probability of a particle diffusing in the two dimensional
domain near a ``windy cliff'' at is investigated. The particle dies
upon reaching the edge of the cliff. In addition to diffusion, the particle is
influenced by a steady ``wind shear'' with velocity , \ie, no average bias either toward or away from the cliff.
For this semi-infinite system, the particle survival probability decays with
time as , compared to in the absence of wind. Scaling
descriptions are developed to elucidate this behavior, as well as the survival
probability within a semi-infinite strip of finite width with particle
absorption at . The behavior in the strip geometry can be described in
terms of Taylor diffusion, an approach which accounts for the crossover to the
decay when the width of the strip diverges. Supporting numerical
simulations of our analytical results are presented.Comment: 13 pages, plain TeX, 5 figures available upon request to SR
(submitted to J. Stat. Phys.
- …