142,529 research outputs found

    Acetylene terminated matrix resins

    Get PDF
    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications

    The integrated optic RF spectrum analyzer

    Get PDF
    The results of measurements made on a fully integrated optic RF spectrum analyzer (IOSA) are reported. The performance of the device acousto-optic bandwidth, single-tone RF resolution, two-tone RF resolution, single-tone dynamic range, two-tone dynamic range, and single-tone RF response are presented. The device parameters that control device performance are analyzed. These results demonstrate the viability of the IOSA for real time spectrum analysis of pulsed and CW RF signals. Improvements of RF bandwidth resolution can be obtained by the use of larger collimated optical beams which requires larger optical lens elements, and hence, larger crystals

    Charged stripes from alternating static magnetic field

    Full text link
    We motivate and perform a calculation of the energy of a cold fluid of charged fermions in the presence of a striped magnetic background. We find that a non-trivial value for the doping density on the walls is preferredComment: RevTeX, 3 pages, 3 encapsulated PostScript figure

    Correspondences and Quantum Description of Aharonov-Bohm and Aharonov-Casher Effects

    Full text link
    We establish systematic consolidation of the Aharonov-Bohm and Aharonov-Casher effects including their scalar counterparts. Their formal correspondences in acquiring topological phases are revealed on the basis of the gauge symmetry in non-simply connected spaces and the adiabatic condition for the state of magnetic dipoles. In addition, investigation of basic two-body interactions between an electric charge and a magnetic dipole clarifies their appropriate relative motions and discloses physical interrelations between the effects. Based on the two-body interaction, we also construct an exact microscopic description of the Aharonov-Bohm effect, where all the elements are treated on equal footing, i.e., magnetic dipoles are described quantum-mechanically and electromagnetic fields are quantized. This microscopic analysis not only confirms the conventional (semiclassical) results and the topological nature but also allows one to explore the fluctuation effects due to the precession of the magnetic dipoles with the adiabatic condition relaxed

    Anisotropic strains and magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3}

    Full text link
    Thin films of perovskite manganite La_{0.7}Ca_{0.3}MnO_{3} were grown epitaxially on SrTiO_3(100), MgO(100) and LaAlO_3(100) substrates by the pulsed laser deposition method. Microscopic structures of these thin film samples as well as a bulk sample were fully determined by x-ray diffraction measurements. The unit cells of the three films have different shapes, i.e., contracted tetragonal, cubic, and elongated tetragonal for SrTiO_3, MgO, and LaAlO_3 cases, respectively, while the unit cell of the bulk is cubic. It is found that the samples with cubic unit cell show smaller peak magnetoresistance than the noncubic ones do. The present result demonstrates that the magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3} can be controlled by lattice distortion via externally imposed strains.Comment: Revtex, 10 pages, 2 figure

    Mössbauer study of nanodimensional nickel ferrite-mechanochemical synthesis and catalytic properties

    Get PDF
    Iron-nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron-nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and catalytic properties of iron-nickel samples is established

    X-ray Scattering Study of the spin-Peierls transition and soft phonon behavior in TiOCl

    Full text link
    We have studied the S=1/2 quasi-one-dimensional antiferromagnet TiOCl using single crystal x-ray diffraction and inelastic x-ray scattering techniques. The Ti ions form staggered spin chains which dimerize below Tc1 = 66 K and have an incommensurate lattice distortion between Tc1 and Tc2 = 92 K. Based on our measurements of the intensities, wave vectors, and harmonics of the incommensurate superlattice peaks, we construct a model for the incommensurate modulation. The results are in good agreement with a soliton lattice model, though some quantitative discrepancies exist near Tc2. The behavior of the phonons has been studied using inelastic x-ray scattering with ~2 meV energy resolution. For the first time, a zone boundary phonon which softens at the spin-Peierls temperature Tsp has been observed. Our results show reasonably good quantitative agreement with the Cross-Fisher theory for the phonon dynamics at wave vectors near the zone boundary and temperatures near Tsp. However, not all aspects of the data can be described, such as the strong overdamping of the soft mode above Tsp. Overall, our results show that TiOCl is a good realization of a spin-Peierls system, where the phonon softening allows us to identify the transition temperature as Tsp=Tc2=92 KComment: 14 pages, 14 figure
    corecore