2,658 research outputs found
Mesoscopic Aharonov-Bohm oscillations in metallic rings
We study the amplitude of mesoscopic Aharonov-Bohm oscillations in
quasi-one-dimensional (Q1D) diffusive rings. We consider first the
low-temperature limit of a fully coherent sample. The variance of oscillation
harmonics is calculated as a function of the length of the leads attaching the
ring to reservoirs. We further analyze the regime of relatively high
temperatures, when the dephasing due to electron-electron interaction
suppresses substantially the oscillations. We show that the dephasing length
L_phi^AB governing the damping factor exp(-2pi R /L_phi^AB) of the oscillations
is parametrically different from the common dephasing length for the Q1D
geometry. This is due to the fact that the dephasing is governed by energy
transfers determined by the ring circumference 2pi R, making L_phi^AB
R-dependent.Comment: 16 pages, 4 figures, to appear in proceedings of NATO/Euresco
Conference "Fundamental Problems of Mesoscopic Physics: Interactions and
Decoherence", Granada (Spain), September 200
Predictive Ability of QCD Sum Rules for Excited Baryons
The masses of octet baryons are calculated by the method of QCD sum rules.
Using generalized interpolating fields, three independent sets of QCD sum rules
are derived which allow the extraction of low-lying N* states with spin-parity
1/2+, 1/2- and 3/2- in both the non-strange and strange channels. The
predictive ability of the sum rules is examined by a Monte-Carlo based analysis
procedure in which the three phenomenological parameters (mass, coupling,
threshold) are treated as free parameters simultaneously. Realistic
uncertainties in these parameters are obtained by simultaneously exploring all
uncertainties in the QCD input parameters. Those sum rules with good predictive
power are identified and their predictions are compared with experiment where
available.Comment: 33 pages, 2 figure
Universal conductance fluctuations in non-integer dimensions
We propose an Ansatz for Universal conductance fluctuations in continuous
dimensions from 0 up to 4. The Ansatz agrees with known formulas for integer
dimensions 1, 2 and 3, both for hard wall and periodic boundary conditions. The
method is based solely on the knowledge of energy spectrum and standard
assumptions. We also study numerically the conductance fluctuations in 4D
Anderson model, depending on system size L and disorder W. We find a small
plateau with a value diverging logarithmically with increasing L. Universality
gets lost just in 4D.Comment: 4 pages, 4 figures submitted to Phys. Rev.
Electronic coherence in metals: comparing weak localization and time-dependent conductance fluctuations
Quantum corrections to the conductivity allow experimental assessment of
electronic coherence in metals. We consider whether independent measurements of
different corrections are quantitatively consistent, particularly in systems
with spin-orbit or magnetic impurity scattering. We report weak localization
and time-dependent universal conductance fluctuation data in quasi-one- and
two-dimensional AuPd wires between 2 K and 20 K. The data inferred from both
methods are in excellent quantitative agreement, implying that precisely the
same coherence length is relevant to both corrections.Comment: 5 pages, 4 figures. Scheduled to appear in PRB 70, 041304 (2004
Quantum Interference of Coulomb Interaction and Disorder: Phase Shift of Friedel Oscillations and an Instability of the Fermi Sea
We investigate the influence of interference between Coulomb interaction and
impurity scattering on the static electronic response in
disordered metals to leading order in the effective Coulomb interaction. When
the transport relaxation time is much shorter than the
quasiparticle life time, we find a \mbox{sgn}(2p_F-q)/\sqrt{|2p_F-q|}
divergence of the polarization function at the Fermi surface (). It
causes a phase shift of the Friedel oscillations as well as an enhancement of
their amplitude. Our results are consistent with experiments and may be
relevant for understanding the stability of the amorphous state of certain
alloys against crystallization.Comment: 11 pages, 4 PostScript figures appended as a self-extracting tar
archive; includes output instruction
Conductance fluctuations in a quantum dot under almost periodic ac pumping
It is shown that the variance of the linear dc conductance fluctuations in an
open quantum dot under a high-frequency ac pumping depends significantly on the
spectral content of the ac field. For a sufficiently strong ac field
, where is the dephasing rate induced by
ac noise and is the electron escape rate, the dc conductance
fluctuations are much stronger for the harmonic pumping than in the case of the
noise ac field of the same intensity. The reduction factor in a static
magnetic field takes the universal value of 2 only for the white--noise
pumping. For the strictly harmonic pumping of
sufficiently large intensity the variance is almost insensitive to the static
magnetic field . For the quasi-periodic ac
field of the form with
and we predict the novel
effect of enchancement of conductance fluctuations at commensurate frequencies
.Comment: 4 pages RevTex, 4 eps figures; the final version to appear in
Phys.Rev.
Relaxation process in a regime of quantum chaos
We show that the quantum relaxation process in a classically chaotic open
dynamical system is characterized by a quantum relaxation time scale t_q. This
scale is much shorter than the Heisenberg time and much larger than the
Ehrenfest time: t_q ~ g^alpha where g is the conductance of the system and the
exponent alpha is close to 1/2. As a result, quantum and classical decay
probabilities remain close up to values P ~ exp(-sqrt(g)) similarly to the case
of open disordered systems.Comment: revtex, 5 pages, 4 figures discussion of the relations between time
scale t_q and weak localization correction and between dynamical and
disordered systems is adde
Mesoscopic fluctuations of the Density of States and Conductivity in the middle of the band of Disordered Lattices
The mesoscopic fluctuations of the Density of electronic States (DoS) and of
the conductivity of two- and three- dimensional lattices with randomly
distributed substitutional impurities are studied. Correlations of the levels
lying above (or below) the Fermi surface, in addition to the correlations of
the levels lying on opposite sides of the Fermi surface, take place at half
filling due to nesting. The Bragg reflections mediate to increase static
fluctuations of the conductivity in the middle of the band which change the
distribution function of the conductivity at half- filling.Comment: 5 pages, 3 figure
Conductance Fluctuations of Open Quantum Dots under Microwave Radiation
We develop a time dependent random matrix theory describing the influence of
a time-dependent perturbation on mesoscopic conductance fluctuations in open
quantum dots. The effect of external field is taken into account to all orders
of perturbation theory, and our results are applicable to both weak and strong
fields. We obtain temperature and magnetic field dependences of conductance
fluctuations. The amplitude of conductance fluctuations is determined by
electron temperature in the leads rather than by the width of electron
distribution function in the dot. The asymmetry of conductance with respect to
inversion of applied magnetic field is the main feature allowing to distinguish
the effect of direct suppression of quantum interference from the simple
heating if the frequency of external radiation is larger than the temperature
of the leads .Comment: 7 pages, 5 figure
Inelastic Scattering Time for Conductance Fluctuations
We revisit the problem of inelastic times governing the temperature behavior
of the weak localization correction and mesoscopic fluctuations in one- and
two-dimensional systems. It is shown that, for dephasing by the electron
electron interaction, not only are those times identical but the scaling
functions are also the same.Comment: 10 pages Revtex; 5 eps files include
- …