16 research outputs found

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, 伪-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and 尾-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (伪1, 伪2, and 尾), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Detecting Drug Promiscuity Using Gaussian Ensemble Screening

    No full text
    International audiencePolypharmacology describes the binding of a ligand to multiple protein targets (a promiscuous ligand) or multiple diverse ligands binding to a given target (a promiscuous target). Pharmaceutical companies are discovering increasing numbers of both promiscuous drugs and drug targets. Hence, polypharmacology is now recognized as an important aspect of drug design. Here, we describe a new and fast way to predict polypharmacological relationships between drug classes quantitatively, which we call Gaussian Ensemble Screening (GES). This approach represents a cluster of molecules with similar spherical harmonic surface shapes as a Gaussian distribution with respect to a selected center molecule. Calculating the Gaussian overlap between pairs of such clusters allows the similarity between drug classes to be calculated analytically without requiring thousands of bootstrap comparisons, as in current promiscuity prediction approaches. We find that such cluster similarity scores also follow a Gaussian distribution. Hence, a cluster similarity score may be transformed into a probability value, or "p-value", in order to quantify the relationships between drug classes. We present results obtained when using the GES approach to predict relationships between drug classes in a subset of the MDL Drug Data Report (MDDR) database. Our results indicate that GES is a useful way to study polypharmacology relationships, and it could provide a novel way to propose new targets for drug repositioning
    corecore