299 research outputs found

    Estimating Cloud and Aerosol UV Modification Factors Based on Spectral Measurement from the Brewer Spectrophotometer

    Get PDF
    Cloud and aerosol modification factors are investigated in the spectral range of ultraviolet (UV) to correct for cloud and aerosol extinction effects from clear sky irradiance. The cloud modification factor (CMF) and aerosol modification factor (AMF) are estimated using radiative transfer model (RTM) simulations and ground-based observations in Seoul, Korea. The modification factors show a spectral dependence within the spectral range of 300 to 360 nm, which is the range used to estimate erythemal UV. The CMF and AMF values are estimated with high spectral resolution with considerations of solar zenith angle (SZA), cloud/aerosol amount, and total ozone variation. From the simulation studies, the variation in the CMFs within the spectral range of 300-360 nm is estimated to be 0.031-0.055, which is twice as large as the decrease in CMFs resulting from a SZA increase of 10 degrees. In addition, the CMFs estimated from observational data show significant spectral dependence, varying from 2.5% to 10.0%. Because of the small aerosol optical depth (AOD) value, however, the variation in the AMF calculated from simulations is estimated to be between 0.007 and 0.045, indicating lower spectral dependence than the CMF. Furthermore, the spectral difference in the AMF calculated from observational data is insignificant relative to the daily-averaged total ozone error and uncertainties related to the reference irradiance spectrum under aerosol-free conditions

    Application examples of a very economic way of cellular sprayed concrete on retaining wall and artificial rock

    Get PDF
    An economic slope structure construction method for landscape was developed, which utilized the cellular sprayed concrete for high performance shotcrete. This can improve the performance of shotcrete material, maximize the construction advantages of shotcrete and further harmonize with the surrounding environment. This may solve various problems such as efficient slope stabilization of large-scale slopes from natural disasters that occur annually due to climate change, the necessity of disaster prevention and restoration technologies, existing slope maintenance and reinforcement construction methods for weathering. This construction method maximizes the economic feasibility by manufacturing a high-performance cellular shotcrete using an ordinary ready mixed concrete and concrete pump car. Cellular shotcrete is produced by incorporating cellular and mineral admixtures in the process of remixing and dispersing the mineral admixture in an ordinary ready mixed concrete at a job site. High strength and high durability are secured by using high-performance cellular shotcrete without using accelerators. Speed and safety are improved by adopting a concrete pump car reaching a far way on the slope without formwork in the top-down and bottom-up method. In addition, this technique can highlight nature-friendly scenery since it is a construction method that comprehends natural rock shapes and colors, by carving various natural rock patterns on the placed high-performance shotcrete before the thickness is adjusted and before it hardens. After curing for a certain period of time, a coloring agent like stain is sprayed on the surface to develop color by neutralization reaction

    Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals

    Get PDF
    The atomic-layered semiconducting materials of transition metal dichalcogenides are considered effective light sources with both potential applications in thin and flexible optoelectronics and novel functionalities. In spite of the great interest in optoelectronic properties of two-dimensional transition metal dichalcogenides, the excitonic properties still need to be addressed, specifically in terms of the interlayer interactions. Here, we report the distinct behavior of the A and B excitons in the presence of interlayer interactions of layered MoS 2 crystals. Micro-photoluminescence spectroscopic studies reveal that on the interlayer interactions in double layer MoS 2 crystals, the emission quantum yield of the A exciton is drastically changed, whereas that of the B exciton remains nearly constant for both single and double layer MoS 2 crystals. First-principles density functional theory calculations confirm that a significant charge redistribution occurs in the double layer MoS 2 due to the interlayer interactions producing a local electric field at the interfacial region. Analogous to the quantum-confined Stark effect, we suggest that the distinct behavior of the A and B excitons can be explained by a simplified band-bending model.1

    The kinematics of young stellar population in the W5 region of the Cassiopeia OB6 association: implication on the formation process of stellar associations

    Full text link
    The star-forming region W5 is a major part of the Cassiopeia OB6 association. Its internal structure and kinematics may provide hints of the star formation process in this region. Here, we present a kinematic study of young stars in W5 using the Gaia data and our radial velocity data. A total 490 out of 2,000 young stars are confirmed as members. Their spatial distribution shows that W5 is highly substructured. We identify a total of eight groups using the k-means clustering algorithm. There are three dense groups in the cavities of H II bubbles, and the other five sparse groups are distributed at the ridge of the bubbles. The three dense groups have almost the same ages (5 Myr) and show a pattern of expansion. The scale of their expansion is not large enough to account for the overall structure of W5. The three northern groups are, in fact, 3 Myr younger than the dense groups, which indicates the independent star formation events. Only one group of them shows the signature of feedback-driven star formation as its members move away from the eastern dense group. The other two groups might have formed in a spontaneous way. On the other hand, the properties of two southern groups are not understood as those of a coeval population. Their origins can be explained by dynamical ejection of stars and multiple star formation. Our results suggest that the substructures in W5 formed through multiple star-forming events in a giant molecular cloud.Comment: 16 pages, 12 figures, Accepted for publication in A

    Assessment of Aerosol Optical Depth Under Background and Polluted Conditions Using AERONET and VIIRS Datasets

    Get PDF
    We investigated aerosol optical depth (AOD) under background and polluted conditions using Aerosol Robotic Network (AERONET) and Visible Infrared Imaging Radiometer Suite (VIIRS) observations. The AOD data were separated into background, high, and median AOD (BAOD, HAOD, and MAOD, respectively) based on the cumulative AOD distribution at each point and then their spatiotemporal variations were analyzed. Persistent pollutant emissions from industrial activity in South Asia (SUA) and Northeast Asia (NEA) produced the highest BAOD values. Gridded-BAODs obtained from VIIRS Deep Blue AOD products showed widespread high-level BAOD over the oceans associated with transport from dust and biomass burning events. The temporal variations in BAOD and HAOD were generally consistent with that of MAOD, but differences were found in seasonal variation as well as in long-term trends in some regions. Southeast Asia (SEA) and South America/South Africa (SAM/SAF) showed similar HAOD levels owing to biomass burning, but BAODs were higher in SEA than in SAM/SAF. In NEA, BAOD was lowest during the summer rainy season, as opposed to the peaks in MAOD and HAOD. Long-term trends of the AODs show clear regional characteristics. The AODs have decreasing trends in NEA, Europe/Mediterranean basin, and Northeast America but increasing trends in SUA, North Africa, and the Middle East. The trend of HAOD in Northwest America and Australia was opposite to that of BAOD. The spatiotemporal patterns of the HAOD and BAOD provide detailed information on changes in aerosol loading compared to using only MAOD

    Southern Hemisphere mid- and high-latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations

    Get PDF
    To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005-2016). While CO shows a significant negative trend, the others show overall positive trends. Seasonal and regional differences in trends are also discussed

    A Feasibility Study on the Application of TVDI on Accessing Wildfire Danger in the Korean Peninsula

    Get PDF
    Wildfire is a major natural disaster affecting socioeconomics and ecology. Remote sensing data have been widely used to estimate the wildfire danger with an advantage of higher spatial resolution. Among the several wildfire related indices using remote sensing data, Temperature Vegetation Dryness Index (TVDI) assesses wildfire danger based on both Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Although TVDI has physical advantages by considering both weather and vegetation condition, previous studies have shown TVDI does not performed well compare to other wildfire related indices over the Korean Peninsula. In this study we have attempted multiple modification to improve TVDI performance over the study region. In-situ measured air temperature was employed to increase accuracy, regression line was generated using monthly data to include seasonal effect, and TVDI was calculated at each province level to consider vegetation type and local climate. The modified TVDI calculation method was evaluated in wildfire cases and showed significant improvement in wildfire danger estimation

    Temporal variability of surface air pollutants in megacities of South Korea

    Get PDF
    This study investigated the various temporal (weekly, monthly, and inter-annual) variability of air pollutants (PM10, SO2, NO2, O-3, CO) in seven megacities in South Korea (Seoul, Busan, Incheon, Daegu, Gwangju, Daejeon, and Ulsan). We found that the general decreasing trend of PM10, SO2, NO2, and CO. An exceptional pollutant is O-3, showing a clear increasing trend consistently in all seven megacities. Seasonally PM10, SO2, NO2, and CO have the highest level in winter due to the large fossil-fuel combustion for the heating demand, but O-3 shows the maximum peak in summer related to the intensified photochemistry. Based on the analysis for percentile values of air pollutants, we recognized that some patterns of air pollutants in Korean megacities are overlooked: O-3 increase is not perfectly related to the NO2 pattern, somewhat high SO2 in the coastal cities, ambiguous weekly pattern on Monday (as a weekday) and Sunday (as a weekend). Through this comprehensive analysis of multiple air pollutants using the percentile values, the characteristic for various temporal change of air pollutants in Korean megacities can be better understood, and some useful ideas for the air quality control in the urban region can be also excavated

    Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

    Get PDF
    Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory
    corecore