29 research outputs found

    Size-selective Circulating Tumor Cell Isolation on a Centrifugal Microfluidic Device

    Get PDF
    Biomedical EngineeringDetection of circulating tumor cells (CTCs) has gained increasing attention as scientists and physicians learn more about the roles these malignant cells play in metastatic cancer and disease progression. Quantification and molecular analysis of CTCs are considered very important because they can function as potential indicators of early diagnosis and prognosis of cancer metastasis. Therefore, many efforts have been made to develop a reliable method to detect the CTCs. However, one major drawback of CTC detection using a conventional microfluidic approach is that it generally requires a long and complicated processing time due to its small scale and slow fluid velocity. In addition, commonly used immunoaffinity-based positive selection method has a limitation that its recovery rate heavily relies on EpCAM expression of target CTCs, which is known to be heterogeneous among different cell types. In this thesis, a size-selective lab-on-a-disc platform is introduced for a rapid and label-free isolation of CTCs from whole blood. The polycarbonate track-etch (PCTE) membrane was utilized to isolate CTCs based on the size difference between the target cell and other blood cells. Validation of the device was performed using the MCF7 breast cancer cell line spiked into PBS buffer solution as well as healthy donor blood. The capture efficiency of approximately 50~65 % was achieved with the devised CTC isolation system. The purity of the captured cells varied, ranging from 15 % to 30 %. For the clinical studies, patient blood samples from gastric cancer and breast cancer patients were tested and analyzed. The number of CTCs ranging from 5 to 29 CTCs was captured. Overall, the CTC detection rate for the lung cancer patient was 50 %, and the detection rate for the gastric cancer patients was 38.4 %.ope

    Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA) pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs) is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model.</p> <p>Results</p> <p>Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats.</p> <p>Conclusion</p> <p>Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.</p

    First snapshot on behavioral characteristics and related factors of patients with chronic kidney disease in South Korea during the COVID-19 pandemic (June to October 2020)

    Get PDF
    Background The recent novel coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented changes in behavior. We evaluated the current status of precautionary behavior and physical activity in chronic kidney disease (CKD) patients during the COVID-19 pandemic. Methods A population of CKD patients (n = 306) registered in the Study on Kidney Disease and Environmental Chemicals (SKETCH, Clinical Trial No. NCT04679168) cohort recruited from June 2020 to October 2020 was included in the study. We conducted a questionnaire survey related to risk perception of COVID-19, precautionary behavior, and physical activity. Results There were 187 patients (61.1%) with estimated glomerular filtration rate of <45 mL/min/1.73 m2. This population showed a higher degree of risk perception for COVID-19 than the general population. Age was the most significant determinant of risk perception among CKD patients. During the pandemic, social distancing and hygiene-related behavior were significantly increased (p < 0.001). The frequency of exercise was decreased only in those who took regular exercise, without diabetes, or with a lower Charlson comorbidity index (CCI) (p < 0.001), with no change among the other groups. Socioeconomic status and comorbidities significantly affected behavioral characteristics regardless of the category. Education and income were significantly associated with precautionary behaviors such as staying at home and hand sanitizer use. Patients with higher CCI status significantly increased frequency of exercise (adjusted odds ratio, 2.10; 95% confidence interval, 1.01–4.38). Conclusion CKD patients showed higher risk perception with active precautionary behavioral changes than the general population. Healthcare providers should be aware of the characteristics to comprise precautionary behavior without reducing physical activity

    Default-Mode-Like Network Activation in Awake Rodents

    Get PDF
    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks

    Multiple Perforations Due to Unwitnessed Ingestion of Multiple Magnets

    No full text

    Thyroid hormone disrupting potentials of benzisothiazolinone in embryo-larval zebrafish and rat pituitary GH3 cell line

    No full text
    Benzisothiazolinone (BIT), one of the most widely used antimicrobial agents in consumer products, has frequently been detected in the water environment. The present study was conducted to determine the adverse effects of BIT on the thyroid neuroendocrine system of zebrafish embryos/larvae. Rat pituitary (GH3) cell line was employed to support the underlying mechanism of thyroid hormone disrupting effects. Significant coagulation and hatching delay were observed in embryos exposed to 30 μg/L of BIT, which in turn remarkably decreased hatchability and larval survival. In BIT-exposed larvae, tshβ, tshr, and trh genes were significantly upregulated along with a decrease in thyroxine and triiodothyronine content, indicating that BIT decreased thyroid hormones and increased thyrotropin-releasing hormone and thyroid stimulating hormone secretion through a feedback circuit. The downregulation of trα and deio2 genes in the zebrafish larvae suggests the inhibition of thyroid hormone receptors and deiodination. Similar to the results in zebrafish, upregulation of tshβ and downregulation of trα, trβ, deio1, and deio2 genes were observed in GH3 cells. Our observations suggest that BIT can decrease the level of thyroid hormones by influencing central regulation, receptor binding, and deiodination

    A Primary Acoustic Startle Pathway: Obligatory Role of Cochlear Root Neurons and the Nucleus Reticularis Pontis Caudalis

    No full text
    [EN] Davis et al. (1982) proposed a primary acoustic startle circuit in rats consisting of the auditory nerve, posteroventral cochlear nucleus, an area near the ventrolateral lemniscus (VLL), nucleus reticularis pontis caudalis (PnC), and spinal motoneurons. Using fiber-sparing lesions, the present study reevaluated these and other structures together with the role of neurons embedded in the auditory nerve [cochlear root neurons (CRNs)], recently hypothesized to be involved in acoustic startle. Small electrolytic lesions of the VLL or ventrolateral tegmental nucleus (VLTg) failed to eliminate startle. Large electrolytic lesions including the rostral ventral nucleus of the trapezoid body (rVNTB) and ventrolateral parts of PnC or lesions of the entire PnC blocked startle. However, small NMDA-induced lesions of the rVNTB failed to block startle, making it unlikely that the rVNTB itself is part of the startle pathway. In contrast, NMDA lesions of the full extension of the ventrolateral part of the PnC blocked startle completely, suggesting that the ventrolateral part of the PnC is critically involved. Bilateral kainic acid lesions of CRNs also blocked the startle reflex completely, providing the first direct evidence for an involvement of CRNs in startle. This blockade probably was not caused by damage to the auditory nerve, because the lesioned animals showed intact compound action potentials recorded from the ventral cochlear nucleus. Hence, a primary acoustic startle pathway may involve three synapses onto (1) CRNs, (2) neurons in PnC, and (3) spinal motoneurons

    Ecological Risk Assessment of Amoxicillin, Enrofloxacin, and Neomycin: Are Their Current Levels in the Freshwater Environment Safe?

    No full text
    Veterinary pharmaceuticals may cause unexpected adverse effects on non-target aquatic species. While these pharmaceuticals were previously identified as priority compounds in ambient water, their ecological risks are relatively unknown. In this study, a series of chronic toxicity tests were conducted for these pharmaceuticals using algae, two cladocerans, and a fish. After a 21-d exposure to amoxicillin, enrofloxacin, and neomycin, no observed effect concentration (NOEC) for the reproduction of Daphnia magna was detected at 27.2, 3.3, and 0.15 mg/L, respectively. For the survival of juvenile Oryzias latipes following the 40-d exposure, NOEC was found at 21.8, 3.2, and 0.87 mg/L, respectively. Based on the results of the chronic toxicity tests and those reported in the literature, predicted no-effect concentrations (PNECs) were determined at 0.078, 4.9, and 3.0 µg/L for amoxicillin, enrofloxacin, and neomycin, respectively. Their hazard quotients (HQs) were less than 1 at their average levels of occurrence in ambient freshwater. However, HQs based on the maximum detected levels of amoxicillin and enrofloxacin were determined at 21.2 and 6.1, respectively, suggesting potential ecological risks. As the potential ecological risks of these veterinary pharmaceuticals at heavily contaminated sites cannot be ignored, hotspot delineation and its management are required
    corecore