53 research outputs found

    The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen

    Get PDF
    Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis

    Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV)

    Get PDF
    BACKGROUND: Severe acute respiratory syndrome (SARS), a recent epidemic human disease, is caused by a novel coronavirus (SARS-CoV). First reported in Asia, SARS quickly spread worldwide through international travelling. As of July 2003, the World Health Organization reported a total of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological damages may account for the severity of respiratory distress, little is known about how the genome-wide gene expression of the host changes under the attack of SARS-CoV. RESULTS: Based on changes in gene expression of peripheral blood, we identified 52 signature genes that accurately discriminated acute SARS patients from non-SARS controls. While a general suppression of gene expression predominated in SARS-infected blood, several genes including those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS patients by generalized associate plots (GAP) according to the expression profiles of 52 signature genes. Through this method, we discovered a smooth transition pattern of severity from normal controls to acute SARS patients. The rank of SARS severity was significantly correlated with the recovery period (in days) and with the clinical pulmonary infection score. CONCLUSION: The use of the GAP approach has proved useful in analyzing the complexity and continuity of biological systems. The severity rank derived from the global expression profile of significantly regulated genes in patients may be useful for further elucidating the pathophysiology of their disease

    Association of HLA class I with severe acute respiratory syndrome coronavirus infection

    Get PDF
    BACKGROUND: The human leukocyte antigen (HLA) system is widely used as a strategy in the search for the etiology of infectious diseases and autoimmune disorders. During the Taiwan epidemic of severe acute respiratory syndrome (SARS), many health care workers were infected. In an effort to establish a screening program for high risk personal, the distribution of HLA class I and II alleles in case and control groups was examined for the presence of an association to a genetic susceptibly or resistance to SARS coronavirus infection. METHODS: HLA-class I and II allele typing by PCR-SSOP was performed on 37 cases of probable SARS, 28 fever patients excluded later as probable SARS, and 101 non-infected health care workers who were exposed or possibly exposed to SARS coronavirus. An additional control set of 190 normal healthy unrelated Taiwanese was also used in the analysis. RESULTS: Woolf and Haldane Odds ratio (OR) and corrected P-value (Pc) obtained from two tails Fisher exact test were used to show susceptibility of HLA class I or class II alleles with coronavirus infection. At first, when analyzing infected SARS patients and high risk health care workers groups, HLA-B*4601 (OR = 2.08, P = 0.04, Pc = n.s.) and HLA-B*5401 (OR = 5.44, P = 0.02, Pc = n.s.) appeared as the most probable elements that may be favoring SARS coronavirus infection. After selecting only a "severe cases" patient group from the infected "probable SARS" patient group and comparing them with the high risk health care workers group, the severity of SARS was shown to be significantly associated with HLA-B*4601 (P = 0.0008 or Pc = 0.0279). CONCLUSIONS: Densely populated regions with genetically related southern Asian populations appear to be more affected by the spreading of SARS infection. Up until recently, no probable SARS patients were reported among Taiwan indigenous peoples who are genetically distinct from the Taiwanese general population, have no HLA-B* 4601 and have high frequency of HLA-B* 1301. While increase of HLA-B* 4601 allele frequency was observed in the "Probable SARS infected" patient group, a further significant increase of the allele was seen in the "Severe cases" patient group. These results appeared to indicate association of HLA-B* 4601 with the severity of SARS infection in Asian populations. Independent studies are needed to test these results

    Multiple Cellular Electrophysiological Effects of a Novel Antiarrhythmic Furoquinoline Derivative HA-7 [ N

    No full text

    The genome sequence of serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The genome sequence of serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen"</p><p>Nucleic Acids Research 2005;33(7):2351-2351.</p><p>Published online 22 Apr 2005</p><p>PMCID:PMC1084322.</p><p>© The Author 2005. Published by Oxford University Press. All rights reserved</p
    corecore