4 research outputs found

    Knowledge Corpus Error in Question Answering

    Full text link
    Recent works in open-domain question answering (QA) have explored generating context passages from large language models (LLMs), replacing the traditional retrieval step in the QA pipeline. However, it is not well understood why generated passages can be more effective than retrieved ones. This study revisits the conventional formulation of QA and introduces the concept of knowledge corpus error. This error arises when the knowledge corpus used for retrieval is only a subset of the entire string space, potentially excluding more helpful passages that exist outside the corpus. LLMs may mitigate this shortcoming by generating passages in a larger space. We come up with an experiment of paraphrasing human-annotated gold context using LLMs to observe knowledge corpus error empirically. Our results across three QA benchmarks reveal an increased performance (10% - 13%) when using paraphrased passage, indicating a signal for the existence of knowledge corpus error. Our code is available at https://github.com/xfactlab/emnlp2023-knowledge-corpus-errorComment: Findings of EMNLP 202

    A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor

    No full text
    By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical

    A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor

    No full text
    By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical
    corecore