892 research outputs found

    Pseudo-Hall effect and anisotropic magnetoresistance in a micronscale Ni80Fe20 device

    Get PDF
    The pseudo-Hall effect (PHE) and anisotropic magnetoresistance (AMR) in a micronscale Ni80Fe20, six-terminal device, fabricated by optical lithography and wet chemical etching from a high quality UHV grown 30 Angstrom Au/300 Angstrom Ni80Fe20 film, have been studied. The magnetisation reversal in different parts of the device has been measured using magneto-optical Kerr effect (MOKE), The device gives a 50% change in PHE voltage with an ultrahigh sensitivity of 7.3%Oe(-1) at room temperature. The correlation between the magnetisation, magneto-transport properties, lateral shape of the device and directions of the external applied field is discussed based on extensive MOKE, AMR and PHE results

    Influence of lateral geometry on magnetoresistance and magnetisation reversal in Ni80Fe20 wires

    Get PDF
    The magnetisation reversal processes and magnetoresistance behaviour in micron-sized Ni80Fe20 wires with triangular and rectangular modulated width have been studied. The wires were fabricated by electron beam lithography and a lift-off process. A combination of magnetic force microscopy (MFM), magneto-optical Kerr effect (MOKE) and magnetoresistance (MR) measurements shows that the lateral geometry of the wires greatly influences the magnetic and transport properties. The width modulations modify not only the shape-dependent demagnetising fields, but also the current density. The correlation between the lateral geometry, the magnetic and the transport properties is discussed based on MFM, MOKE and MR results

    Dynamics of tilt-based browsing on mobile devices

    Get PDF
    A tilt-controlled photo browsing method for small mobile devices is presented. The implementation uses continuous inputs from an accelerometer, and a multimodal (visual, audio and vibrotactile) display coupled with the states of this model. The model is based on a simple physical model, with its characteristics shaped to enhance usability. We show how the dynamics of the physical model can be shaped to make the handling qualities of the mobile device fit the browsing task. We implemented the proposed algorithm on Samsung MITs PDA with tri-axis accelerometer and a vibrotactile motor. The experiment used seven novice users browsing from 100 photos. We compare a tilt-based interaction method with a button-based browser and an iPod wheel. We discuss the usability performance and contrast this with subjective experience from the users. The iPod wheel has significantly poorer performance than button pushing or tilt interaction, despite its commercial popularity

    A post-tsunami assessment of coastal living resources of Langkawi Archipelago, Peninsular Malaysia

    Get PDF
    Rapid and detailed post-tsunami surveys carried out in the Langkawi archipelago in January 2005 showed that the coral reefs dOld_ID not suffer any significant structural damage. Nevertheless, there were signs of recent sediment resuspension at the sites studied. The diversity and abundance of coral reef fishes and invertebrates were low. However, this was not attributed to the tsunami effect but rather to the present environmental conditions. The extent of damage at the villages of Kubang Badak and Kuala Teriang may indicate that intact coastal ecosystems such as mangroves have the potential to protect lives and property during natural disasters

    Magnetic domain evolution in permalloy mesoscopic dots

    Get PDF
    Permalloy (Ni80Fe20) squares (30 nm thick and w mu m wide; 1 less than or equal to w less than or equal to 200 mu m) and circular disks (30 nm thick and r mu m diameter; 1 less than or equal to r less than or equal to 200 mu m) prepared on a GaAs (100) substrate were observed in both their demagnetized and remanent states by magnetic force microscopy (MFM) associated with non-contact atomic force microscopy (NC-AFM). The squares (2 less than or equal to w mu m) exhibited conventional closure domains and the corner plays a very important role in creating new walls. The circular disks, on the other hand, formed either vortex domain (5 less than or equal to r less than or equal to 20 mu m) or multi-domain (50 less than or equal to r mu m) states, The magnetization rotation is observed by MFM to change according to the size and shape of the elements, The MFM observations are supported by micromagnetic calculations which confirm the effect of the corner on the domain wall formation

    Magnetization reversal in mesoscopic Ni80Fe20 wires: A magnetic domain launching device

    Get PDF
    The magnetization reversal process in mesoscopic permalloy (Ni80Fe20) wire structures has been investigated using scanning Kerr microscopy, magnetic force microscopy (MFM) and micromagnetic calculations. We find that the junction offers a site for reversed domain wall nucleation in the narrow part of the wires. As a consequence, the switching field is dominated by the domain nucleation field and the junction region initiates reversal by the wall motion following the nucleation of domains. Our results suggest the possibility of designing structures that can be used to “launch” reverse domains in narrow wires within a controlled field rang

    Magnetization reversal and magnetic anisotropy in Co network nanostructures

    Get PDF
    The magnetization reversal and magnetic anisotropy in Co network structures have been studied using magneto-optic Kerr effect (MOKE). An enhancement of the coercivity is observed in the network structures and is attributed to the pinning of domain walls by the hole edges in the vicinity of which the demagnetizing field spatially varies. We find that the magnetization reversal process is dominated by the intrinsic unaxial anisotropy (2K(u)/M(s)approximate to 200 Oe) in spite of the shape anisotropy induced by the hole edges. The influence of the cross-junction on the competition between the intrinsic uniaxial anisotropy and the induced shape anisotropy is discussed using micromagnetic simulations

    Ferromagnetic/III-V semiconductor heterostructures and magneto-electronic devices

    Get PDF
    The interface magnetic and electronic properties of two Fe/III-V semiconductor systems, namely Fe/GaAs and Fe/InAs, grown at room temperature have been studied. A "magnetic interface", which is essential for the fabrication of magneto-electronic (ME) devices, was realized in both Fe/GaAs and Fe/InAs systems with suitable substrate processing and growth conditions. Furthermore, Fe/InAs was shown to have favorable interface electronic properties as Fe forms a low resistance ohmic contact on InAs. Two prototypes of ME device based on Fe/InAs are also discussed

    Singularities in the Fermi liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states

    Full text link
    We consider a two dimensional electron system in an external magnetic field at and near an even denominator Landau level filling fraction. Using a fermionic Chern--Simons approach we study the description of the system's low energy excitations within an extension of Landau's Fermi liquid theory. We calculate perturbatively the effective mass and the quasi--particle interaction function characterizing this description. We find that at an even denominator filling fraction the fermion's effective mass diverges logarithmically at the Fermi level, and argue that this divergence allows for an {\it exact} calculation of the energy gaps of the fractional quantized Hall states asymptotically approaching these filling fractions. We find that the quasi--particle interaction function approaches a delta function. This singular behavior leads to a cancelation of the diverging effective mass from the long wavelength low frequency linear response functions at even denominator filling fractions.Comment: 46 pages, RevTeX, 5 figures included in a uuencoded postscript file. Minor revisions relative to the original version. The paper will be published in the Physical Review B, and can be retrieved from the World Wide Web, in http://cmtw.harvard.edu/~ster
    corecore