1,496 research outputs found

    Higgs Structures of Dyonic Instantons

    Full text link
    We study Higgs field configurations of dyonic instantons in spontaneously broken (4+1)-dimensional Yang-Mills theory. The adjoint scalar field solutions to the covariant Laplace equation in the ADHM instanton background are constructed in general noncanonical basis, and they are used to study explicitly the Higgs field configurations of dyonic instantons when the gauge fields are taken by Jackiw-Nohl-Rebbi instanton solutions. For these solutions corresponding to small instanton number we then consider in some detail the zero locus of the Higgs field, which describes the cross section of supertubes connecting parallel D4-branes in string theory. Also the information on the Higgs zeroes is used to discuss the residual gauge freedom concerning the Jackiw-Nohl-Rebbi solutions.Comment: 1+27 pages, 6 figure

    Generating asymptotically plane wave spacetimes

    Get PDF
    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line.Comment: 23 pages, 1 eps figure; harvmac; v2:refs added; v3:minor comments adde

    Two-Dimensional Diffusion in the Presence of Topological Disorder

    Full text link
    How topological defects affect the dynamics of particles hopping between lattice sites of a distorted, two-dimensional crystal is addressed. Perturbation theory and numerical simulations show that weak, short-ranged topological disorder leads to a finite reduction of the diffusion coefficient. Renormalization group theory and numerical simulations suggest that longer-ranged disorder, such as that from randomly placed dislocations or random disclinations with no net disclinicity, leads to subdiffusion at long times.Comment: 10 pages, 6 figure

    Reaction, Levy Flights, and Quenched Disorder

    Full text link
    We consider the A + A --> emptyset reaction, where the transport of the particles is given by Levy flights in a quenched random potential. With a common literature model of the disorder, the random potential can only increase the rate of reaction. With a model of the disorder that obeys detailed balance, however, the rate of reaction initially increases and then decreases as a function of the disorder strength. The physical behavior obtained with this second model is in accord with that for reactive turbulent flow, indicating that Levy flight statistics can model aspects of turbulent fluid transport.Comment: 6 pages, 5 pages. Phys. Rev. E. 65 (2002) 011109--1-

    Conductance fluctuations in a quantum dot under almost periodic ac pumping

    Full text link
    It is shown that the variance of the linear dc conductance fluctuations in an open quantum dot under a high-frequency ac pumping depends significantly on the spectral content of the ac field. For a sufficiently strong ac field γτϕ<<1\gamma\tau_{\phi}<< 1, where 1/τϕ1/\tau_{\phi} is the dephasing rate induced by ac noise and γ\gamma is the electron escape rate, the dc conductance fluctuations are much stronger for the harmonic pumping than in the case of the noise ac field of the same intensity. The reduction factor rr in a static magnetic field takes the universal value of 2 only for the white--noise pumping. For the strictly harmonic pumping A(t)=A0cosωtA(t)=A_{0}\cos\omega t of sufficiently large intensity the variance is almost insensitive to the static magnetic field r1=2τϕγ<<1r-1= 2\sqrt{\tau_{\phi}\gamma} << 1. For the quasi-periodic ac field of the form A(t)=A0[cos(ω1t)+cos(ω2t)]A(t)=A_{0} [\cos(\omega_{1} t)+\cos(\omega_{2} t)] with ω1,2>>γ\omega_{1,2} >> \gamma and γτϕ<<1\gamma\tau_{\phi} << 1 we predict the novel effect of enchancement of conductance fluctuations at commensurate frequencies ω2/ω1=P/Q\omega_{2}/\omega_{1}=P/Q.Comment: 4 pages RevTex, 4 eps figures; the final version to appear in Phys.Rev.

    Mesoscopic fluctuations of the Density of States and Conductivity in the middle of the band of Disordered Lattices

    Full text link
    The mesoscopic fluctuations of the Density of electronic States (DoS) and of the conductivity of two- and three- dimensional lattices with randomly distributed substitutional impurities are studied. Correlations of the levels lying above (or below) the Fermi surface, in addition to the correlations of the levels lying on opposite sides of the Fermi surface, take place at half filling due to nesting. The Bragg reflections mediate to increase static fluctuations of the conductivity in the middle of the band which change the distribution function of the conductivity at half- filling.Comment: 5 pages, 3 figure

    Spectral and Transport Properties of d-Wave Superconductors With Strong Impurities

    Full text link
    One of the remarkable features of disordered d-wave superconductors is strong sensitivity of long range properties to the microscopic realization of the disorder potential. Particularly rich phenomenology is observed for the -- experimentally relevant -- case of dilute distributions of isolated impurity centers. Building on earlier diagrammatic analyses, the present paper derives and analyses a low energy effective field theory of this system. Specifically, the results of previous diagrammatic T-matrix approaches are extended into the perturbatively inaccessible low energy regimes, and the long range (thermal) transport behaviour of the system is discussed. It turns out that in the extreme case of a half-filled tight binding band and infinitely strong impurities (impurities at the unitary limit), the system is in a delocalized phase.Comment: 14 pages, two figures include

    Conductance Fluctuations of Open Quantum Dots under Microwave Radiation

    Full text link
    We develop a time dependent random matrix theory describing the influence of a time-dependent perturbation on mesoscopic conductance fluctuations in open quantum dots. The effect of external field is taken into account to all orders of perturbation theory, and our results are applicable to both weak and strong fields. We obtain temperature and magnetic field dependences of conductance fluctuations. The amplitude of conductance fluctuations is determined by electron temperature in the leads rather than by the width of electron distribution function in the dot. The asymmetry of conductance with respect to inversion of applied magnetic field is the main feature allowing to distinguish the effect of direct suppression of quantum interference from the simple heating if the frequency of external radiation is larger than the temperature of the leads ωT\hbar\omega \gg T.Comment: 7 pages, 5 figure

    New Higgs signals induced by mirror fermion mixing effects

    Full text link
    We study the conditions under which flavor violation arises in scalar-fermion interactions, as a result of the mixing phenomena between the standard model and exotic fermions. Phenomenological consequences are discussed within the specific context of a left-right model where these additional fermions have mirror properties under the new SU(2)_R gauge group. Bounds on the parameters of the model are obtained from LFV processes; these results are then used to study the LFV Higgs decays (H --> tau l_j, l_j = e, mu), which reach branching ratios that could be detected at future colliders.Comment: 12 pages, 2 figures, ReVTex4, graphicx, to be published in Phys. Rev.

    Scalar meson and glueball decays within a effective chiral approach

    Full text link
    We study the strong and electromagnetic decay properties of scalar mesons above 1 GeV within a chiral approach. The scalar-isoscalar states are treated as mixed states of quarkonia and glueball configurations. A fit to the experimental decay rates listed by the Particle Data group is performed to extract phenomenological constraints on the nature of the scalar resonances. A comparison to other theoretical approaches in the scalar meson sector is discussed.Comment: 13 pages, accepted for publication in PL
    corecore