18,742 research outputs found
QCD Sum Rule for S_{11}(1535)
We propose a new interpolating field for S(1535) to determine its mass
from QCD sum rules. In the nonrelativistic limit, this interpolating field
dominantly reduces to two quarks in the s-wave state and one quark in the
p-wave state. An optimization procedure, which makes use of a duality relation,
yields the interpolating field which overlaps strongly with the negative-parity
baryon and at the same time does not couple at all to the low lying
positive-parity baryon. Using this interpolating field and applying the
conventional QCD sum rule analysis, we find that the mass of S is
reasonably close to the experimentally known value, even though the precise
determination depends on the poorly known quark-gluon condensate. Hence our
interpolating field can be used to investigate the spectral properties of
S(1535).Comment: 12 pages, Revtex, 1 ps figure available from author
symmetry restoration in QCD with flavors
Recently, there have been reports that the chirally restored phase of QCD is
effectively symmetric under rather than . We supplement their argument by including the contributions from
topologically nontrivial gauge field configurations and discuss how the
conclusions are modified. General statements are made concerning the particle
spectrum of QCD with light flavors in the high temperature chirally
restored phase.Comment: 6 pages, no figures, revte
Transverse Quark Distribution in Mesons - QCD Sum Rule Approach -
QCD sum rules are used to compute the first few moments of the mesonic quark
momentum. Transverse, longitudinal and mixed transverse-longitudinal components
are examined. The transverse size of the pion is shown to be dictated by the
gluon condensate, even though the mass and the longitudinal distribution are
dominated by the quark condensate. The implications of our results for color
transparency physics and finite temperature QCD are discussed.Comment: 8 pages, Latex, Univ. of Washington preprint DOE/ER/40427-24-N9
Multi-user lattice coding for the multiple-access relay channel
This paper considers the multi-antenna multiple access relay channel (MARC),
in which multiple users transmit messages to a common destination with the
assistance of a relay. In a variety of MARC settings, the dynamic decode and
forward (DDF) protocol is very useful due to its outstanding rate performance.
However, the lack of good structured codebooks so far hinders practical
applications of DDF for MARC. In this work, two classes of structured MARC
codes are proposed: 1) one-to-one relay-mapper aided multiuser lattice coding
(O-MLC), and 2) modulo-sum relay-mapper aided multiuser lattice coding
(MS-MLC). The former enjoys better rate performance, while the latter provides
more flexibility to tradeoff between the complexity of the relay mapper and the
rate performance. It is shown that, in order to approach the rate performance
achievable by an unstructured codebook with maximum-likelihood decoding, it is
crucial to use a new K-stage coset decoder for structured O-MLC, instead of the
one-stage decoder proposed in previous works. However, if O-MLC is decoded with
the one-stage decoder only, it can still achieve the optimal DDF
diversity-multiplexing gain tradeoff in the high signal-to-noise ratio regime.
As for MS-MLC, its rate performance can approach that of the O-MLC by
increasing the complexity of the modulo-sum relay-mapper. Finally, for
practical implementations of both O-MLC and MS-MLC, practical short length
lattice codes with linear mappers are designed, which facilitate efficient
lattice decoding. Simulation results show that the proposed coding schemes
outperform existing schemes in terms of outage probabilities in a variety of
channel settings.Comment: 32 pages, 5 figure
Mass Shift and Width Broadening of J/psi in hot gluonic plasma from QCD Sum Rules
We investigate possible mass shift and width broadening of J/psi in hot
gluonic matter using QCD sum rule. Input values of gluon condensates at finite
temperature are extracted from lattice QCD data for the energy density and
pressure. Although stability of the moment ratio is achieved only up to T/Tc ~
1.05, the gluon condensates cause a decrease of the moment ratio, which results
in change of spectral properties. Using the Breit-Wigner form for the
phenomenological side, we find that mass shift of J/psi just above Tc can reach
maximally 200 MeV and width can broaden to dozens of MeV.Comment: 4 pages, 5 figures, version to appear in Physical Review Letter
Transconductance fluctuations as a probe for interaction induced quantum Hall states in graphene
Transport measurements normally provide a macroscopic, averaged view of the
sample, so that disorder prevents the observation of fragile interaction
induced states. Here, we demonstrate that transconductance fluctuations in a
graphene field effect transistor reflect charge localization phenomena on the
nanometer scale due to the formation of a dot network which forms near
incompressible quantum states. These fluctuations give access to fragile
broken-symmetry and fractional quantum Hall states even though these states
remain hidden in conventional magnetotransport quantities.Comment: 6 pages, 3 figure
QCD sum rules for the anti-charmed pentaquark
We present a QCD sum rule analysis for the anti-charmed pentaquark state with
and without strangeness. While the sum rules for most of the currents are
either non-convergent or dominated by the continuum, the one for the
non-strange pentaquark current composed of two diquarks and an antiquark, is
convergent and has a structure consistent with a positive parity pentaquark
state after subtracting out the continuum contribution. Arguments are
presented on the similarity between the result of the present analysis and that
based on the constituent quark models, which predict a more stable pentaquark
states when the antiquark is heavy.Comment: 19 pages, 8 figures, REVTex, revised version,new figures added and
references update
Charmonium-hadron interactions from QCD
The heavy quark system is an excellent probe to learn about the QCD dynamics
at finite density. First, we discuss the properties of the and
meson at finite nucleon density. We discuss why their properties should change
at finite density and then introduce an exact QCD relation among these hadron
properties and the energy momentum tensor of the medium. Second, we discuss
attempts to calculate charmonium-hadron total cross section using effective
hadronic models and perturbative QCD. We emphasize a recent calculation, where
the cross section is derived using QCD factorization theorem. We conclude by
discussing some challenges for SIS 200.Comment: 8 pages, Presented at 6th International Conference on Strange Quarks
in Matter: 2001: A Flavorspace Odyssey (SQM2001), Frankfurt, Germany, 25-29
Sep 2001, submitted to J. Phys.
Critical behavior of charmonia across the phase transition: A QCD sum rule approach
We investigate medium-induced change of mass and width of J/psi and eta_c
across the phase transition in hot gluonic matter using QCD sum rules. In the
QCD sum rule approach, the medium effect on heavy quarkonia is induced by the
change of both scalar and twist-2 gluon condensates, whose temperature
dependences are extracted from the lattice calculations of energy density and
pressure. Although the stability of the operator product expansion side seems
to break down at T > 1.06Tc for the vector channel and T>1.04Tc for the
pseudoscalar channel, we find a sudden change of the spectral property across
the critical temperature Tc, which originates from an equally rapid change of
the scalar gluon condensate characterized by e-3p. By parameterizing the ground
state of the spectral density by the Breit-Wigner form, we find that for both
J/psi and eta_c, the masses suddenly decrease maximally by a few hundreds of
MeV and the widths broaden to ~100 MeV slightly above Tc. Implications for
recent and future heavy ion experiments are discussed.
We also carry out a similar analysis for charmonia in nuclear matter, which
could serve as a testing ground for observing the precursor phenomena of the
QCD phase transition. We finally discuss the possibility of observing the mass
shift at nuclear matter at the FAIR project at GSI.Comment: 18 pages, 21 figures, 2 figures are added and discussion on effect of
dynamical quarks is extended. version to appear in Phys.Rev.
- …