3 research outputs found

    Role of surfactants in filtration and fouling of colloidal silica

    Get PDF
    The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centres and universitiesThe objective of this study is to investigate the influence of three different types of surfactants (i) anionic sodium dodecyl sulphate (SDS), (ii) cationic (hexadecyltrimethylammonium bromide (CTAB), and (iii) non-ionic: Triton X-100 (Polyethylene glycol tert-octylphenyl ether) and the effect of surfactant concentration on ultrafiltration of colloidal silica nanoparticles. Due to the high surface area to volume ratio of nanoparticles, the role of surface interactions on the stability of silica suspensions is enhanced. The effects of adsorption of surfactants are studied by means of static light scattering and zeta potential measurements. The strongest particle-surfactant interaction is observed between oppositely charged CTAB with silica, followed by TX-100 and SDS. An ultrafiltration hollow-fibre membrane is used in a semi-dead end configuration to perform filtration of silica suspension with varying surfactant concentration to critical micelle concentration (CMC) ratio, csurfactant/ccmc in a flux-step mode. The effect of surfactants and process conditions (flux) on filtration process have been compared by evaluating the critical flux and total fouling rate. The occurrence of critical flux and evolution of fouling rates are also strongly affected by the surfactant concentration. This difference in filtration performance is attributed to various competing and complementary mechanisms: electrostatic and hydrophobic interactions between surfactant-membrane surface, electrostatic and hydrophobic interactions between particles as well as the hydrodynamic effect of fluid motion towards the membrane. A comparison of the overall fouling potential for surfactant-silica systems showed that SDS-silica systems showed fouling rates of an order of magnitude higher than those of CTAB-silica and TX100-silica systems at the same csurf/cCMC ratio. This was an unexpected finding, as we would expect stable colloidal systems such as SDS-silica systems would exhibit lower fouling than unstable colloidal systems (e.g. CTAB-silica systems).European Commissio

    Fouling behavior of silica nanoparticle-surfactant mixtures during constant flux dead-end ultrafiltration

    No full text
    The increasing use of engineered nanoparticles in customer products results in their accumulation in water sources. In this experimental study, we investigated the role of surfactant type (cationic, anionic and non-ionic) and concentration on fouling development, nanoparticle rejection and fouling irreversibility during dead-end ultrafiltration of model silica nanoparticles. Our work demonstrates that the type of surfactant influences the nanoparticle stability, which in turn is responsible for differences in fouling behavior of the nanoparticles. Moreover, the surfactant itself interacts with the PES-PVP membrane and contributes to the fouling as well. We have shown that anionic SDS (sodium dodecylsulfate) does not interact extensively with the negatively charged silica nanoparticles and does not change significantly the surface charge and size of these nanoparticles. Adsorption of the cationic CTAB (cetyltrimethylammonium bromide) onto the silica nanoparticles causes charge transition and nanoparticle aggregation, whereas non-ionic TX-100 (Triton X-100) neutralizes the surface charge of the nanoparticles but does not change significantly the nanoparticle size. The most severe fouling development was observed for the silica nanoparticle – TX-100 system, where nanoparticles in the filtration cake formed exhibited the lowest repulsive interactions. Rejection of the nanoparticles was also highest for the mixture containing silica nanoparticles and TX-100

    Fouling behavior of silica nanoparticle-surfactant mixtures during constant flux dead-end ultrafiltration

    Get PDF
    \u3cp\u3eThe increasing use of engineered nanoparticles in customer products results in their accumulation in water sources. In this experimental study, we investigated the role of surfactant type (cationic, anionic and non-ionic) and concentration on fouling development, nanoparticle rejection and fouling irreversibility during dead-end ultrafiltration of model silica nanoparticles. Our work demonstrates that the type of surfactant influences the nanoparticle stability, which in turn is responsible for differences in fouling behavior of the nanoparticles. Moreover, the surfactant itself interacts with the PES-PVP membrane and contributes to the fouling as well. We have shown that anionic SDS (sodium dodecylsulfate) does not interact extensively with the negatively charged silica nanoparticles and does not change significantly the surface charge and size of these nanoparticles. Adsorption of the cationic CTAB (cetyltrimethylammonium bromide) onto the silica nanoparticles causes charge transition and nanoparticle aggregation, whereas non-ionic TX-100 (Triton X-100) neutralizes the surface charge of the nanoparticles but does not change significantly the nanoparticle size. The most severe fouling development was observed for the silica nanoparticle – TX-100 system, where nanoparticles in the filtration cake formed exhibited the lowest repulsive interactions. Rejection of the nanoparticles was also highest for the mixture containing silica nanoparticles and TX-100.\u3c/p\u3
    corecore