4,715 research outputs found

    외국인 근로자 양육을 통한 선교

    Get PDF

    A Policy Intervention Study to Identify High-Risk Groups to Prevent Industrial Accidents in Republic of Korea

    Get PDF
    AbstractBackgroundThe objective of this study is to identify high-risk groups for industrial accidents by setting up 2003 as the base year and conducting an in-depth analysis of the trends of major industrial accident indexes the index of industrial accident rate, the index of occupational injury rate, the index of occupational illness and disease rate per 10,000 people, and the index of occupational injury fatality rate per 10,000 people for the past 10 years.MethodsThis study selected industrial accident victims, who died or received more than 4 days of medical care benefits, due to occupational accidents and diseases occurring at workplaces, subject to the Industrial Accident Compensation Insurance Act, as the study population.ResultsAccording to the trends of four major indexes by workplace characteristics, the whole industry has shown a decreasing tendency in all four major indexes since the base year (2003); as of 2012, the index of industrial accident rate was 67, while the index of occupational injury fatality rate per 10,000 people was 59.ConclusionThe manufacturing industry, age over 50 years and workplaces with more than 50 employees showed a high severity level of occupational accidents. Male workers showed a higher severity level of occupational accidents than female workers. The employment period of < 3 years and newly hired workers with a relatively shorter working period are likely to have more occupational accidents than others. Overall, an industrial accident prevention policy must be established by concentrating all available resources and capacities of these high-risk groups

    Synthesis and design of nanocrystalline metal oxides for applications in carbon nanotube growth and antioxidants

    Get PDF
    Synthesis of size tunable nanomaterials creates distinct chemo-physical properties. Recently, the popularity of magnetic iron oxide and cerium oxide (CeO2) nanocrystals enables researchers to use magnetic iron oxides (magnetite and ferrites) in size dependent magnetic separation and CeO2 as an automobile exhaust gas catalyst. This research shows production of diameter-controlled monodisperse magnetic iron oxide (ranging from 3 to 40 nm in diameter) and CeO2 (from 3 to 10 nm in diameter) nanocrystals with exceptional narrow diameter distribution (σ<10%). The morphology and composition of the nanocrystals were varied by use of diverse metal precursors, reaction temperature, time, cosurfactants, and molar ratio between metal salt and surfactant. Now the narrow diameter distributions of preformed magnetic iron oxide nanocrystals made it possible to grow diameter controlled uniform CNTs. The correlation between aluminum ferrite nanocrystal diameter and CNT diameter was nearly one. Additionally, we could synthesize the highest percentage (60%) of single walled CNTs from the smallest aluminum ferrite nanocrystals (4.0 nm). Because of the synthesis of uniform nanocrystalline CeO2, we could study diameter dependent antioxidant properties of nanocrystalline CeO2; antioxidant capacity of CeO2 was nine times higher than a known commercial standard antioxidant, Trolox. In addition, the smallest CeO2 nanocrystal (4 nm) decreased the oxidative stress of human dermal fibroblasts (HDF) exposed to hydrogen peroxide. These works suggest better understanding of monodisperse nanocrystal synthetic mechanism and potential uses of the materials, such as high quality CNT growth using magnetic iron oxides as precursor catalysts and the reduction of oxidative stress in cells using monodisperse CeO2 nanocrystal as an antioxidant for reactive oxygen species in biological media

    Lemniscate ensembles with spectral singularity

    Full text link
    We consider a family of random normal matrix models whose eigenvalues tend to occupy lemniscate type droplets as the size of the matrix increases. Under the insertion of a point charge, we derive the scaling limit at the singular boundary point, which is expressed in terms of the solution to the model Painlev\'{e} IV Riemann-Hilbert problem. For this, we apply a version of the Christoffel-Darboux identity and the strong asymptotics of the associated orthogonal polynomials, where the latter was obtained by Bertola, Elias Rebelo, and Grava.Comment: 29 pages, 5 figure

    Synchrotron study of the garnet-type oxide Li6CaSm2Ta2O12

    Get PDF
    Hexalithium calcium disamarium(III) ditantalum(V) dodeca­oxide, Li6CaSm2Ta2O12, crystallizes in a cubic garnet-type structure. In the crystal structure, disordered Li atoms occupy two crystallographic sites. One Li has a tetra­hedral coordination environment in the oxide lattice, whereas the other Li atom occupies a significantly distorted octa­hedral site, with site occupancies for the two Li atoms of 0.26 (7) and 0.44 (2), respectively. Ca and Sm atoms are statistically distributed over the same crystallographic position with a occupancy of 2/3 for Sm and of 1/3 for Ca, and are eightfold coordinated by O atoms. The TaO6 octa­hedron is joined to six others via corner-sharing LiO4 tetra­hedra. One Li and the O atoms lie on general positions, while the other atoms are situated on special positions. The Sm/Ca position has 222, Ta has , and the tetra­hedrally coordinated Li atom has site symmetry

    Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial

    Get PDF
    Mechanical metamaterials exhibit unusual properties, such as negative Poisson???s ratio, which are difficult to achieve in conventional materials. Rational design of mechanical metamaterials at the microscale is becoming popular partly because of the advance in three-dimensional printing technologies. However, incorporating movable building blocks inside solids, thereby enabling us to manipulate mechanical movement at the molecular scale, has been a difficult task. Here, we report a metal-organic framework, self-assembled from a porphyrin linker and a new type of Zn-based secondary building unit, serving as a joint in a hinged cube tessellation. Detailed structural analysis and theoretical calculation show that this material is a mechanical metamaterial exhibiting auxetic behavior. This work demonstrates that the topology of the framework and flexible hinges inside the structure are intimately related to the mechanical properties of the material, providing a guideline for the rational design of mechanically responsive metal-organic frameworks
    corecore