3,899 research outputs found

    Experimental demonstration of stimulated polarization wave in a chain of nuclear spins

    Full text link
    A stimulated wave of polarization, which implements a simple mechanism of quantum amplification, is experimentally demonstrated in a chain of four J-coupled nuclear spins, irradiated by a weak radio-frequency transverse field. The "quantum domino" dynamics, a wave of flipped spins triggered by a flip of the first spin, has been observed in fully 13^{13}C-labeled sodium butyrate.Comment: 8 pages including 3 figure

    Projective measurement in nuclear magnetic resonance

    Get PDF
    It is demonstrated that nuclear magnetic resonance experiments using pseudopure spin states can give possible outcomes of projective quantum measurement and probabilities of such outcomes. The physical system is a cluster of six dipolar-coupled nuclear spins of benzene in a liquid-crystalline matrix. For this system with the maximum total spin S=3, the results of measuring SXS_X are presented for the cases when the state of the system is one of the eigenstates of SZS_Z.Comment: 9 pages incluing 3 figure

    Space-Time Forecasting Using Soft Geostatistics: A Case Study in Forecasting Municipal Water Demand for Phoenix, AZ

    Get PDF
    Managing environmental and social systems in the face of uncertainty requires the best possible forecasts of future conditions. We use space-time variability in historical data and projections of future population density to improve forecasting of residential water demand in the City of Phoenix, Arizona. Our future water estimates are derived using the first and second order statistical moments between a dependent variable, water use, and an independent variable, population density. The independent variable is projected at future points, and remains uncertain. We use adjusted statistical moments that cover projection errors in the independent variable, and propose a methodology to generate information-rich future estimates. These updated estimates are processed in Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the year 2030. Integrating the uncertain estimates into the space-time forecasting process improves forecasting accuracy up to 43.9% over other space-time mapping methods that do not assimilate the uncertain estimates. Further validation studies reveal that BME is more accurate than co-kriging that integrates the error-free independent variable, but shows similar accuracy to kriging with measurement error that processes the uncertain estimates. Our proposed forecasting method benefits from the uncertain estimates of the future, provides up-to-date forecasts of water use, and can be adapted to other socioeconomic and environmental applications.

    Comparison of transjugular intrahepatic portosystemic shunt with covered stent and balloon-occluded retrograde transvenous obliteration in managing isolated gastric varices

    Get PDF
    OBJECTIVE: Although a transjugular intrahepatic portosystemic shunt (TIPS) is commonly placed to manage isolated gastric varices, balloon-occluded retrograde transvenous obliteration (BRTO) has also been used. We compare the long-term outcomes from these procedures based on our institutional experience. MATERIALS AND METHODS: We conducted a retrospective review of patients with isolated gastric varices who underwent either TIPS with a covered stent or BRTO between January 2000 and July 2013. We identified 52 consecutive patients, 27 who had received TIPS with a covered stent and 25 who had received BRTO. We compared procedural complications, re-bleeding rates, and clinical outcomes between the two groups. RESULTS: There were no significant differences in procedural complications between patients who underwent TIPS (7%) and those who underwent BRTO (12%) (p = 0.57). There were also no statistically significant differences in re-bleeding rates from gastric varices between the two groups (TIPS, 7% [2/27]; BRTO, 8% [2/25]; p = 0.94) or in developing new ascites following either procedure (TIPS, 4%; BRTO, 4%; p = 0.96); significantly more patients who underwent TIPS developed hepatic encephalopathy (22%) than did those who underwent BRTO (0%, p = 0.01). There was no statistically significant difference in mean survival between the two groups (TIPS, 30 months; BRTO, 24 months; p = 0.16); median survival for the patients who received TIPS was 16.6 months, and for those who underwent BRTO, it was 26.6 months. CONCLUSION: BRTO is an effective method of treating isolated gastric varices with similar outcomes and complication rates to those of TIPS with a covered stent but with a lower rate of hepatic encephalopathy

    Boundary correlation function of fixed-to-free bcc operators in square-lattice Ising model

    Full text link
    We calculate the boundary correlation function of fixed-to-free boundary condition changing operators in the square-lattice Ising model. The correlation function is expressed in four different ways using 2×22\times2 block Toeplitz determinants. We show that these can be transformed into a scalar Toeplitz determinant when the size of the matrix is even. To know the asymptotic behavior of the correlation function at large distance we calculate the asymptotic behavior of this scalar Toeplitz determinant using the Szeg\"o's theorem and the Fisher-Hartwig theorem. At the critical temperature we confirm the power-law behavior of the correlation function predicted by conformal field theory

    Twelve-spin "Schrodinger cat"

    Full text link
    Pseudopure "cat" state, a superposition of quantum states with all spins up and all spins down, is experimentally demonstrated for a system of twelve dipolar-coupled nuclear spins of fully 13C-labeled benzene molecule oriented in a liquid-crystalline matrix.Comment: Submitted to Applied Physics Letter

    Ballistic spin field-effect transistors: Multichannel effects

    Full text link
    We study a ballistic spin field-effect transistor (SFET) with special attention to the issue of multi-channel effects. The conductance modulation of the SFET as a function of the Rashba spin-orbit coupling strength is numerically examined for the number of channels ranging from a few to close to 100. Even with the ideal spin injector and collector, the conductance modulation ratio, defined as the ratio between the maximum and minimum conductances, decays rapidly and approaches one with the increase of the channel number. It turns out that the decay is considerably faster when the Rashba spin-orbit coupling is larger. Effects of the electronic coherence are also examined in the multi-channel regime and it is found that the coherent Fabry-Perot-like interference in the multi-channel regime gives rise to a nested peak structure. For a nonideal spin injector/collector structure, which consists of a conventional metallic ferromagnet-thin insulator-2DEG heterostructure, the Rashba-coupling-induced conductance modulation is strongly affected by large resonance peaks that arise from the electron confinement effect of the insulators. Finally scattering effects are briefly addressed and it is found that in the weakly diffusive regime, the positions of the resonance peaks fluctuate, making the conductance modulation signal sample-dependent.Comment: 18 pages, 15 figure

    Putative cell adhesion membrane protein Vstm5 regulates neuronal morphology and migration in the central nervous system

    Get PDF
    During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia. Vstm5 also regulates neuronal morphology by promoting dendritic protrusions that later develop into dendritic spines. Using electroporationin utero, we found that Vstm5 overexpression delayed neuronal migration and induced multiple branches in leading processes during corticogenesis. These results indicate that Vstm5 is a new cell-adhesion-like molecule and is critically involved in synaptogenesis and corticogenesis by promoting neuronal membrane dynamics.SIGNIFICANCE STATEMENTNeuronal migration and morphogenesis play critical roles in brain development and function. In this study, we demonstrate for the first time that V-set and transmembrane domain-containing protein 5 (Vstm5), a putative cell adhesion membrane protein, modulates both the position and complexity of central neurons by altering their membrane morphology and dynamics. Vstm5 is also one of the target genes responsible for variations in patient responses to treatments for major depressive disorder. Our results provide the first evidence that Vstm5 is a novel factor involved in the modulation of the neuronal membrane and a critical element in normal neural circuit formation during mammalian brain development.</jats:p

    Preparation of pseudopure state in a cluster of dipolar-coupled spins with "unresolved" spectrum

    Full text link
    A method of creating pseudopure spin states in large clusters of coupled spins is described. It is based on filtering multiple-quantum coherence of the highest order followed by a time-reversal period and partial saturation. Experimental demonstration is presented for a cluster of six dipolar-coupled proton spins of a benzene molecule in liquid crystalline matrix, and the details of spin dynamics are studied numerically.Comment: 15 pages, 3 figures, submitted to Phys. Rev.
    corecore