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ABSTRACT:  Managing environmental and social systems in the face of uncertainty 

requires the best possible forecasts of future conditions.  We use space-time variability in 

historical data and projections of future population density to improve forecasting of 

residential water demand in the City of Phoenix, Arizona.  Our future water estimates are 

derived using the first and second order statistical moments between a dependent variable, 

water use, and an independent variable, population density.  The independent  variable is 

projected at future points, and remains uncertain. We use adjusted statistical moments 

that cover projection errors in the independent variable, and propose a methodology to 

generate information-rich future estimates. These updated estimates are processed in 

Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the 

year 2030. Integrating the uncertain estimates into the space-time forecasting process 

improves forecasting accuracy up to 43.9% over other space-time mapping methods that 

do not assimilate the uncertain estimates. Further validation studies reveal that BME is 

more accurate than co-kriging that integrates the error- free independent variable, but 

shows similar accuracy to kriging with measurement error that processes the uncertain 

estimates. Our proposed forecasting method benefits from the uncertain estimates of the 

future, provides up-to-date forecasts of water use, and can be adapted to other socio-

economic and environmental applications. 

 

Key Words: water use, forecasting, soft data, statistical moments,  Bayesian Maximum 

Entropy 
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Introduction 
 
Geographers and other scientists benefit from the conceptual foundations and subsequent 

implementation of tools to simulate and analyze space-time processes. The incorporation 

of space and time into studies of multidimensional and complex phenomena have been 

subjects of considerable theoretical, methodological, and applied research (MacEachren 

et al. 1998; MacEachren et al. 1999; Mennis and Peuquet 2000; Peuquet 2001, 2002, 

2005; Bertolotto et al. 2007; Pebesma et al. 2007). Included are problems that address the 

rates, extents, and causes of tropical deforestation (Koffi et al. 1995); the anomalies 

related to vegetation and El Niño/Southern Oscillation events (Swetnam et al. 1999); and 

the results of forecasting urban growth (Ward et al. 2000).  Two challenges in space-time 

analysis are interpolation and extrapolation. Interpolation involves estimating attribute 

values for locations within the spatial extent of the study area for which hard recorded 

data are not available. Extrapolation involves extending the spatial area or the temporal 

sequence beyond the scope of the observed data. Interpolation and extrapolation assume 

that observable patterns provide relevant information about the spatial and temporal 

dynamics of the phenomenon in question. While previous studies have mined these 

spatial and temporal dynamics separately, this study uses information about the dynamic 

interactions between space and time for future extrapolation. 

There are numerous time-based approaches to extrapolate space-time phenomenon. 

Classical examples involve exponential smoothing, simple/weighted moving averages, 

adaptive/constant parameters, simple trend analysis, and regression techniques 

(Armstrong 1984; Adya and Collopy 1998; Gardner 2006). An extensive body of 

literature also covers more refined time-series models to account for autocorrelation in 
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regression errors (Wei 1990; Kedem 1993; Chatfield 2004). Commonly used models 

include the autoregressive (AR), moving average (MA), mixed AR-MA (ARMA), and 

integrated AR-MA (ARIMA). They first assume that estimated regression residuals in 

historical data are correlated, and  then derive, after mathematical manipulations, ordinary 

regression models with an independent error term to use for forecasting. 

Research addressing space-time (and not simply spatial or temporal) analysis uses a 

generalized regression technique that provides probabilistic outputs that vary with 

distance to data points. Geostatistical methods cope with non-stationary properties 

inherent in environmental data while accounting for spatial autocorrelations (Araghinejad 

et al. 2006); they were initially implemented for purely spatial estimation. Later, a more 

generalized space-time approach was developed by adding time as an additional 

dimension of space (Kyriakidis and Journel 1999). More advanced space-time 

geostatistical approaches were developed to account for causal dependencies in the 

composite space-time metric (Christakos 1992; Kyriakidis and Journel 1999; Christakos 

2000), and their applications are increasingly found in environmental sciences (Vyas and 

Christakos 1997; Kyriakidis and Journel 2001a; Kyriakidis and Journel 2001b; Goovaerts 

et al. 2006) and land cover modeling (Boucher et al. 2006). 

Space-time geostatistics are limited because they rely on complete and error- free 

measurements (i.e., hard data), which can be sparse. In addition, they use linear 

estimation procedures despite the non- linear dynamics of many biophysical and human 

systems. The goal of this paper is to demonstrate that it is possible to make estimates of 

the future from statistical moments between dependent and independent variables. This 

process creates soft data, using the relationship between the variables (first order 
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moments) and the level of uncertainty in the relationship (second order moments). Using 

soft data improves forecasting accuracy by providing a larger database and by integrating 

what we know about uncertainty into the modeling process. 

We used the Bayesian Maximum Entropy (BME) approach of geostatistics 

(Christakos 1990, 2000; Christakos et al. 2002) to process soft data in a non- linear way. 

Unlike kriging methods, which assume Gaussian distributions (i.e., integrating up to 

second order statistical moments), BME can incorporate higher-order statistical moments. 

It can therefore cope with non-Gaussian conditions.  BME has been used in applications 

dealing with urban sustainability (Brazel et al. 2007), climatology (Lee et al. 2008), 

hydrology (Serre et al. 2003a; Lee and Wentz 2008), exposure and health mapping (Lee 

2005; Akita et al. 2007; Puangthongthub et al. 2007), risk assessment (Serre et al. 2003b; 

Choi et al. 2007), and geographical epidemiology (Law et al. 2004). These applications 

show that BME is a promising estimator, but there are, to our knowledge, no studies that 

use BME to forecast the distribution of a variable in space and time. 

We demonstrate the development of a space-time forecasting model that takes 

advantage of soft data using a case study of water demand in Phoenix Arizona. This case 

study is relevant to urban planners and policy makers because of the growing urban 

population and the need to plan for residential water usage in a rapidly growing desert 

city. It also fulfills the requirement of our study because there is a dependent variable 

(water consumption) that requires forecasting; and an independent variable that can be 

measured in the present and projected into the future (population density). There is the 

additional requirement of sufficient geographic locations where there are observations for 

both the dependent and independent variable. The statistical moments derived between 
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the water usage (dependent  variable) and population density (independent variable) in the 

present is applied to the projected independent variable to generate soft data of future 

water use.  

 

Forecasting water demand in Phoenix, Arizona 

The study area we used to develop a space-time extrapolation technique is the City of 

Phoenix, located in Maricopa County, Arizona. Phoenix is at the northern edge of the 

Sonoran Desert where summer temperatures can average 42°C or higher with rainfall 

averaging 20 mm per year. For the year 2000, the Maricopa Association of Governments 

(MAG) counted 3.7 million residents in Maricopa County with 1.5 million of those in the 

City of Phoenix. MAG estimates that the popula tion of Phoenix will grow to 2.2 million 

by the year 2030 (MAG 2003). Population growth of this magnitude in an arid 

environment requires credible estimates of water demand for land planners and water 

managers. 

Data 

We used three sources of data to forecast water consumption for the City of Phoenix. The 

dependent variable is residential water consumption by census tract, which we acquired 

from the City of Phoenix Water Services Department for the years 1995-2004. These 

hard data, based on monthly billing records, were aggregated to the census tract level to 

protect the confidentiality of the city’s individual water customers. The independent 

variable is population density per census tract derived from the 2000 US Census. The 

independent variable for the future is the projected population density, which we obtained 
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from MAG, the regional planning authority,  for the years: 2010, 2020, 2025, and 2030. 

The specifics of each data source are described below. 

Residential water consumption (RWC) data are derived from monthly billing records 

for water users in City of Phoenix for the year period 1995-2004. The monthly records 

were available as volumetric values in liters aggregated to census tracts (RWCc) and 

summarized by user types (e.g., single family, multi- family, office, industry, retailer, 

public use, and mixed use). We extracted only the residential water records (both single 

family and multi- family) to develop a residential water duty (RWD) per census tract per 

year with: 

c

tc,
tc, Area

RWC
RWD =  (1) 

where RWC denotes the amount of residential water consumption (in liters) from single-

or multi- family users for a particular census tract (c) and a particular year (t) within the 

period 1995-2004. Area, in km2 is the total area of a census tract (c). Several years had 

missing RWC and therefore there are missing RWD for some tracts leading to different 

sample sizes per year (n=315 for 1995, n=304 for 1996-2001, n=305 for 2002-2003, and 

n=307 for 2004). Figure 1 illustrates RWD for t=1996, 2000, and 2004. 

Population density for the 304 census tracts in the City of Phoenix was derived from 

Summary File 1 of Census 2000 (Figure 2). Because these data are based on an 

enumeration of residents for the year 2000, we assume these are hard data and there is no 

associated uncertainty. Although the problem of Census undercounts has been well 

documented in the demography literature, we are assuming that it is relatively small and 

unlikely to substantially affect our results. We extracted the total population for 304 



 8 

census tracts in the City of Phoenix where RWD exist for the year 2000 and calculated the  

population density (people/km2) for each census tract. 

We obtained future population density from population projections for the years 2010, 

2020, 2025, and 2030, provided by interim socioeconomic projections from MAG (2003). 

MAG followed the projection protocols developed by the Arizona Department of 

Economic Security, and allocated resident population for the future years by Municipal 

Planning Area (MPA), Regional Analysis Zone (RAZ), and Socioeconomic Analysis 

Zone (SAZ). The population projections by SAZ were used in our study because each 

observation represents the smallest area (in some cases, the same area as a census tract) 

and therefore provide the largest number of space-time points for future populations. We 

then developed future population density (people/km2) for the 607 SAZs for each of the 

years 2010, 2020, 2025, and 2030. 

BME Forecasting Approach 

The modeling process involves three primary steps, explained in detail in this section. 

The first step involves generating an initial probability density function (pdf) of water 

consumption given the general knowledge base G, which uses the mean and covariance 

functions from the observed data. The second step builds the site-specific knowledge 

base, S consisting of hard and soft data on water use. Hard data are historical 

measurements at the census tract level and soft data are generated at all SAZ locations 

using a regression model. The final step updates the initial pdf with the S, which leads to 

the posterior pdf, which we use to map water consumption for all desired future time 

periods and the measures of uncertainty for each. 

(i) Generating the prior pdf given the general knowledge base, G 
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We first introduce a space-time random field (STRF) to represent the space-time 

dynamics of residential water duties as log-RWD. We take the logarithm for estimation 

purposes because 1) water consumption is non-negative, and 2) such log-transformation 

are more likely to work with the Gaussian assumption. The STRF is defined as X(pmap), 

denoting a random variable log-RWD in 3 dimensions (2-d for space and 1-d for time), 

where pmap consists of data points pdata and estimation points pk. In our  case pdata are the 

points for observed residential water duties at census tracts over time (log-RWDc,t) and 

soft data described below. The pk are the points for future water consumption estimates. 

(see below for a description of pk). The STRF effectively reflects space-time variability 

and data uncertainty in residential water consumption through a joint probability density 

function (pdf) fX (?map) where ?map are all possible realizations of the STRF X(pmap) at pmap. 

The pdf is used to describe the probability of a given ?map: 

fX (?map) d?map= Prob[?map<X(pmap)<?map+d?map], (2) 

where Prob[.] is probability operator. This step constructs the prior pdf fG (?map) that 

represents the initial probability of X(pmap) over space and time, provided by the general 

knowledge base G. The general knowledge base G consists of the mean trend mX(pmap) 

and covariance functions cX(pmap,pmap’) of water consumption (see Christakos 2000 for 

more details). Given the general knowledge base G, we derived a Gaussian-type prior pdf. 

The mean trend function we used was an additive space-time trend model that applies 

space-time exponential filters (i.e., spatial range for exponential fitter=5km, temporal 

range for exponential filter=4years) to measured log-RWD. To obtain the covariance 

function for this study we calculated covariances at a series of spatial (r) and temporal (τ) 

lags. We fitted these values to the experimental covariances. The fitted covariance is 
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separable and constructed by two exponential functions each of which is parameterized 

by space-time sills (c01 and c02) and ranges ( ar1, ar2, at1, and at2):  
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where c01= 1.53 (log- liters/km2)2, c02=2.29 (log- liters/km2)2, ar1 = 1 km, ar2= 9 km, at1 = 

1.6 years, and at2 = 75 years. 

(ii) Characterizing site-specific knowledge base, S 

There is second type of knowledge base for BME called the site-specific knowledge base 

S, which represents error- free measurements (hard data) χhard and uncertain data (soft 

data) χsoft  of log-RWD. The output includes realizations of the STRF χdata=(χhard, χsoft) at 

data points pdata=(phard, psoft ). Specifically in this study χhard correspond to log-RWD 

measured at census tracts for 1995-2004, and phard represent the centroid of a census tract 

(c) and a particular year (t) during the period 1995-2004. The following equality holds 

between a STRF X(phard) and its realization χhard:  

Prob[ X(phard) =χhard] = 1, (4) 

The χsoft correspond to the estimated log-RWD using a linear regression model at the 

centroids (psoft) of the SAZ boundaries. The soft data are derived by applying regression 

results between log-RWD for the year 2000 (χc in equation 5) and log-population density 

(ψc in equation 5) for the year 2000 centered at census tracts to log-population density at 

the centroids of SAZs in the future (ψ i in equation 6).  

The χi in equation (6) of future log-RWD are expected values µ1 denoting first order 

statistical moments. This regressed relationship includes uncertainty that is characterized 

by standard errors equivalent to second order statistical moments µ2. The µ1 and µ2 builds 
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Gaussian soft data. To quantify µ1 and µ2, we used a quadratic relationship between χc 

and ψc. We selected a non- linear relationship because BME is a non- linear estimator so it 

is more efficient than a linear estimator when dealing with non- linear properties. This 

procedure is based on the following equation: 

χc = β0 + β1ψc + β2ψc
2 + εc     (5) 

where β0, β1, and β2 are coefficients, εc is an uncorrelated random error with zero mean 

and common variance. The regression theory leads to least squares parameters (b0, b1, 

and b2) by minimizing the sum of the squares of the vertical distance between predicted 

and observed values. For a given measurement of the log-population density by SAZ (ψ i) 

the regression results predict a non- linear estimate of log-RWD (χi) per SAZ given ψ i 

(µ1[χi|ψ i]), and its associated uncertainty (µ2[χi|ψ i]) through the following equation: 

χi = b0 + b1ψ i + b2ψ i
2. (6) 

Gaussian soft data χsoft  at psoft  for each centroid  of the 607 SAZs for the years 2010, 2020, 

2025, and 2030 are then described by a conditional probability density function fS (χi|ψ i): 

?soft  = fS (χi|ψ i) = Ν  (µ1[χi|ψ i], µ2[χi|ψ i]).  (7) 

In the case where ψ i is a fixed value of the log of population density by SAZ with no 

uncertainty from projection errors, the µ1[χi|ψ i] and µ2[χi|ψ i] are equivalent to 

b0+b1ψ i+b2ψ i
2 and sX

 2(δT(DTD)-1δ) respectively where δ =[1  ψ i  ψ i
2]T, D is a design 

matrix consisting of the first column with 304 series of 1, the second with the series of ψc, 

and the third with the series of ψc
2,  and sX

 2  is an unbiased estimate for the common 

variance. It is more appropriate to use the square of the standard prediction error of χi, 
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rather than the standard error of χi (µ2[χi]) when predicting a single (or independent) 

variable is important (Montgomery and Runger 2003). Equation (7) then becomes: 

fS(χi|ψ i) = Ν  (b0+b1ψ i+b2ψ i
2, sX

 2(δT(DTD)-1δ+1)), (8) 

When ψ i is treated as random variable biased by the errors, equation (8) should be 

expanded. In cases where a regression parameter bj (i.e., b0, b1, or b2) and ψ i are 

independent and the regression parameters are mutually dependent, different forms of 

statistical moments relative to those in equation (8) can be obtained. We, therefore, build 

probabilistic soft data fS(χi) characterized by new moments: 

fS(χi) = Ν  (b0+b1ψ i+b2(µ2[ψ i]+ ψ i
2), sX

 2(δT(DTD)-1δ)+φ+ sX
 2), (9) 

where φ is a function of bj, ψ i, µ2[bj], µ2[ψi], and covariance matrix between bj. We note 

that equation (8) is just a special case of equation (9) because equation (9) directly 

reduces to equation (8) under the condition that the uncertainty source is negligible 

(i.e., µ2[ψ i]=0).   

Up to this point we have two types of soft data (equation 8 and equation 9). 

Everything is known except for µ2[ψ i] in equation (9), which we need to approximate. A 

simple way is to use nugget covariance analysis (Lee 2005). We first equate a projection 

error- free Spatial Random Field (SRF) Z(s) to projection field Z’(s) (i.e., population 

density by SAZ for a year) times multiplicative projection errors ε (s). Taking the 

logarithm on both sides leads to the following relationship: 

Y ’(s) = Y(s) - log ε(s), (10) 



 13 

where Y ’(s) =log-Z’(s), and Y(s)=log-Z(s). With the assumptions of 1) independence 

between Y(s) and log ε(s), and 2) log ε(s) with a pure nugget covariance function, 

equation (10) is rewritten as: 

cY ’(r) = cY(r) + σlogε
2 δ(r), (11) 

where cY ’(r) and cY(r) are respectively covariances of Y ’(s) (log-population density by 

SAZs) and Y(s) as a function of spatial lag r, and δ(r) is the Dirac delta function. In the 

case of zero lag, equation (11) is simplified to: 

µ2[Y’] = µ2[Y] + µ2[logε2]. (12) 

We approximate µ2[logε2] (i.e., random projection errors) because µ2[Y’] and µ2[Y] are   

obtained from modeling experimental covariance of the realizations ψ i for Y ’(s). As a 

result an expected value and variance of Y(s) is derived when ψ i is given, together with 

equation (10) and properties of log-normal distribution. Thus Y(s) given ψ i has a normal 

distribution N: 

N (ψ i-µ2[logε2] /2,  µ2[logε2] ). (13) 

Finally, the ψ i and µ2[ψ i] in equation (9) are substituted by the ψ i-µ2[logε2] 

/2 and  µ2[logε2]  in equation (13) respectively. 

(iii) Forecasting water consumption, combining knowledge bases G and S 

To map future water consumption, we created a grid of 3721 points (pk) across Phoenix 

for 26 annual time periods from 2005 and 2030. Each grid intersection becomes an 

estimation point pk representing the centroid of an undefined area. We did not account for 

the varying support of the data because the study of Lee and Wentz (2008) already 

addressed the support changes for Phoenix’s water use. The area of the undefined 
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polygons is then assumed to be similar to those of χdata (mean of 4.01 km2 and standard 

deviation of 14.17 km2). 

This step produces the posterior pdf fK (?k) at any estimation point pk by using both G 

and S knowledge bases through a Bayesian conditioning, i.e., fK (?k)=fG (?k| ?hard,?soft ). 

This step provides the final probability of water consumption by the posterior pdf fK (?k) 

at pk:  

fK (?k) = A-1∫ d?soft fS(?soft ) fG (?hard, ?soft, ?k), (14) 

where A is a normalization coefficient. The first order statistical moment of the posterior 

pdf is the estimate ?k in our study while the second order statistical moment of the 

posterior pdf is the estimation uncertainty affected by the presence of data around the 

estimation point, and uncertainty in the soft data. 

Validation 

We validated our soft-data-based approach to forecasting water use in two ways. We first 

wanted to demonstrate that incorporating soft data improves forecasting capabilities. We 

therefore compared a soft data approach (BME with soft data) with two simple space-

time forecasting methods (soft-data-free methods), which differ based on the type of hard 

data used. Our second validation method compares our approach to processing soft data 

with two other methods that use independent data in the forecasting process:  (1) by 

means of cross-covariance (co-kriging), and (2) by means of soft data (kriging with 

measurement error).  

Our first validation effort compares BME to two types of simple space-time kriging. 

The first simple space-time kriging approach uses only χhard. The second uses both χhard 

and χhardened (definition defined below). Five different cases are compared to understand 
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the impact soft data have on space-time forecasting. We used observed water use data 

(log-RWD, as hard data χhard) from the period 1995-1999 to forecasted log-RWD for the 

year 2000, where we have observed RWD data.  Each case consists of water use 

forecasting estimates for the year 2000 using χhardened (see its definition below) and χsoft , 

and a different subset of χhard where 

Case 1 uses χhard from 1995-1999 

Case 2 uses χhard from 1995-1998 

Case 3 uses χhard from 1995-1997 

Case 4 uses χhard from 1995-1996 

Case 5 uses χhard from 1995. 

Using the measured values of log-RWD for the year 2000 (χc) and log-population density 

(ψ i) provides us with the information we need to calculate the regression parameters 

found in equation (6) and their uncertainty with which we can generate the soft data χsoft 

in equation (8) at the locations of ψ i. The soft data account for data uncertainty from the 

extrapolation processes. If we neglect the uncertainty source then the soft data are hard 

data, identical to the first order moments of the soft data. We define these as hardened 

data, χhardened to differentiate from the error-free measurements (χhard). Using the five 

cases of χhard we compared BME (using χhard and χsoft ) to two simple space-time kriging 

methods, one that uses χhard alone and the second that uses both χhard and χhardened (Figure 

4). We compared the year 2000 estimated extrapolation values from the three methods to 

the year 2000 observed values. These observed and predicted values of log-RWD for the 

year 2000 lead to the mean square errors (MSE) that are compared. 
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For the second validation we compared the BME approach of soft data processing to 

co-kriging and kriging with measurement error. We performed the analysis on the 

population density for the year 2000 because it is the only year where we have observed 

dependent and independent data. For each method we performed the following steps, 1) 

we randomly identified 60% of the census tracts (n=182) as the measured values for both 

dependent and independent variables, and assigned the independent variable alone 

(population density) to the remaining 40%; 2) with the dependent and independent 

variables available, we gained cross-covariance for co-kriging; 3) for the 40% sample, we 

obtained soft data for BME and kriging with measurement error; 4) for the 60% sample, 

we applied cross-validation to derive interpolation estimates of water use; and 5) using 

the interpolated estimates and the observed water use values for the 60% sample, we 

calculated the MSE to measure the accuracy of the interpolation. We performed this 

exercise 1000 times per method. For each iteration, we used a different random set of 

input data. We utilized a one-way ANOVA to compare the MSE results of the co-kriging 

and kriging with measurement error to BME. 

 

Results 

Validation 
 
The MSE of BME (using χhard and χsoft ) and the two space-time kriging methods (using 

χhard alone and both χhard and χhardened) were plotted for the five different cases for the year 

2000 (Figure 4). From Case 1 to Case 5, forecasting accuracy tends to decrease regardless 

of the method because there are fewer hard data points as model inputs.  Extrapolation 

based on historical data alone leads to inaccurate estimation as estimates are made 
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beyond the temporal scope of the observed data. To overcome the disadvantage  in space-

time forecasting, we develop a framework that benefits from independent  data. 

According to our validation results, BME reduces the MSE of space-time kriging using 

χhard and χhardened by 43.9% in Case 5 which has the least error-free hard data. Space-time 

kriging using χhard and χhardened is less accurate than BME because the independent  data 

are assimilated without accounting for data uncertainty in the extrapolation. The 

independent information, therefore, could lead to up-to-date extrapolation estimates only 

when its associated uncertainty is rigorously and simultaneously incorporated. There are 

also accuracy improvements when comparing BME to space-time kriging using χhard data 

across the five cases, ranging 24.1% to 26.4%. We attribute these improvements to the 

incorporation of soft data into the forecasting procedure. 

For the second validation we compared the BME approach to soft data processing to 

co-kriging and kriging with measurement error. Figures 5(a) and 5(c) shows the 

covariance for the dependent (log-RWD) and independent variables (log-population 

density) respectively, and Figure 5(b) indicates cross-covariance between the two 

variables. While each circle indicates experimental covariance, each plain curve denotes 

modeled covariance. The modeled covariance consists of two composite exponential 

functions: 
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where spatial ranges a*r1 = 3.5 km and a*r2= 25 km for all models, c*01=1.6062 (log-

liters/km2)2 and c*02=0.0328 (log- liters/km2)2 for log-RWD, c*01=0.7235 (log-

poeple/km2)2 and c*02=0.0462 (log-poeple/km2)2 for log-population density, and 
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c*01=0.7464 (log- liters/km2×log-poeple/km2) and c*02=0.0562 (log- liters/km2×log-

poeple/km2) for cross-covariance. Kriging with measurement error and BME depend on 

the covariance for log-RWD whereas co-kriging relies on the complete covariance matrix 

in Figure 5. As shown in Figure 6, we compute percent reduction in MSE from co-

kriging to BME (Figure 6a) and kriging with measurement error to BME (Figure 6b) 

based on 1000 MSE iterations of each method. If any two methods that are compared 

result in an identical MSE, the percent reduction between the two methods is zero, shown 

as a horizontal line in the figure. The kriging methods are more accurate than BME above 

the line and less accurate than BME below the line. 

Table 1 reports the ANOVA results with MSE as dependent variable and each 

method as independent variable. As demonstrated by Table 1 BME produces similar 

results to kriging with measurement error but better results than co-kriging. In fact BME 

reduces least squares mean MSE by 12.2% over co-kriging. This reduction leads us to 

reason that, when integrating additional data (population density) BME with soft data 

produces more accurate results than co-kriging, which relies on cross-correlation. The 

similarity in accuracy between BME and kriging with measurement error is because we 

used Gaussian soft data describing up to the second order statistical moments. Although 

we did not derive non-Gaussian soft data here, if non-Gaussian soft data are ready for 

estimation, BME is the only method that incorporates non-Gaussian soft data. We expect 

that BME would reduce MSE over kriging with measurement error, as demonstrated in 

the study of Serre and Christakos (1999). 

 
Estimating future water use in Phoenix  
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To obtain µ2[logε2] in equation (13) for each year 2010, 2020, 2025, and 2030, we 

calculated experimental covariances of Y ’(s) (in our study log-population density by 

SAZs) at certain spatial lags (circles in Figure 7), and fit the covariances with an 

exponential model (solid curve in Figure 7). The first circle at zero of spatial lag denotes 

variance (µ2[Y ’] in equation 12). To approximate the projection error (µ2[logε2] in 

equation 13), we initially calculated covariances at first two spatial lags that are close to 

the zero lag (second and third circles in the figure), then µ2[Y] in equation (12) through 

linear extrapolation using the second and third circles, and  finally µ2[logε2] by equation 

(12). The µ2[logε2] is interpreted as an experimental nugget of the covariance model and 

shown as a thick vertical line at zero of spatial lag (Figure 7; Table 2). Each value 

coincides with µ2[logε2] in equation (13) representing an average projection error in the 

SAZ data for a given year. We then compute ψ i-µ2[logε2] /2 in equation (13) using the 

predicted µ2[logε2]. The values of ψ i and µ2[ψ i] equation (9) are respectively substituted 

by ψ i-µ2[logε2]/2 and  µ2[logε2] that characterizes uncertainty from the projections. 

We construct the relationship between χc and ψc by calculating the least squares 

parameters in equation (6): 

χi =8.8567 +1.8694ψi -0.0604ψ i
2 (16) 

Figure 8 shows this relationship (solid curve), 95% prediction interval (dotted curve), and 

χc against ψc (dots). For extrapolation purposes, this relationship is applied to all future 

log-population density ψ i to produce the soft pdf fS(χi) at the space-time points covering 

Phoenix. The values of ψ i, however, remain uncertain due to the projection errors 

embedded in ψ i. If the projection errors are inevitably neglected (i.e., µ2[ψ i]=0), soft data 
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generation relies on equation (8) as used in the validation study. Our proposed framework 

generates soft data using equation (9) while accounting for the data uncertainty sources 

from the projection error in addition to temporal extrapolation. 

BME was used to map future water duties for the City of Phoenix to the year 2030. 

The measured log-RWD for all years available (1995-2004) is now assigned as hard data 

χhard (n=3056). To derive soft data χsoft  we maintain χc and ψc to determine the regression 

parameters, and apply the regressed results to ψ i representing projected population 

density by SAZs for the years 2010, 2020, 2025, and 2030. Since this ψ i contains  

projection errors, the χsoft (n=2428) is generated by equation (9) rather than equation (8).  

BME processes the χhard and χsoft  and resulting estimation is a series of the posterior 

pdf at the estimation points across Phoenix and all years between 2005 and 2030. For 

illustration purposes we represent maps of Phoenix’s water duties (Figure 9) in 2005, 

2010, 2015, 2020, 2025, and 2030 by extracting mean values of the posterior pdfs for 

these years. These results illustrate that Phoenix’s residential water use peaks between 

2012 and 2017, and afterward gradually decreases by 2030.  The up-and-down behavior 

reflects the changing balance between densification which increases water use and 

conservation which reduces it. Increasing conservation is reflected in our historical series 

of water use; household water demand has, in fact, declined over time in Phoenix.  

Densities have steadily increased in Phoenix, and that trend is expected to continue as 

revealed in the population density projections. Forecasts of increasing water use in the 

2010 and 2015 maps reflect rapidly increasing densities aligned with minor increases in 

conservation. In the 2020, 2025, and 2030, conservation effects begin to outweigh density 

gains, and consumption declines overall.  
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Discussion  
 
This paper demonstrates the potential of BME to forecast of water use for Phoenix 

Arizona.  Water use in the future remains uncertain, however, we can use knowledge 

about the relationship between water use and population density and estimates of future 

population density patterns to infer the space-time dynamics of water use in Phoenix. Soft 

data generated by the regression results between water consumption and population 

density provides a reasonable approximation of future patterns. In an evaluation exercise, 

we showed that our space-time geostatistical approach is promising because it processes 

1) space-time dependencies in historical data, and 2) an independent variable for future 

points pertinent to the application through soft data detailing uncertain water use in the 

future. 

An important component of water conservation policy development and infrastructure 

management is having most accurate forecasting model of future residential water 

demand. Water demand in Phoenix is affected by uncertain climate, rapid population 

growth, an urban heat island effect, and the use of pools and irrigated landscapes (Brazel 

et al. 2007; Guhathakurta and Gober 2007; Wentz and Gober 2007). In response to the 

long-term risk from water scarcity, numerous conservation strategies have been 

implemented by local and state governments, leading to a gradual decrease of per capita 

annual water use in Phoenix (Balling and Gober 2007). Our developed model provides 

credible forecasts of future water demand and considers on-going conservation policy 

and population growth. 
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Soft data for forecasting should be more informative by considering 1) any interaction 

terms neglected in equation (9) to avoid overestimating corresponding variances, 2) 

multiple independent variables rather than one variable (i.e., population density in our 

study), 3) point-specific projection errors and higher order statistical moments derived 

from a mathematical framework or a measurement error model. We will pursue these 

points in future publications. 

 

Conclusion 

The BME approach demonstrated here for Phoenix water consumption takes advantage 

of composite space-time dynamics to project future water use. We use statistical 

moments to generate future patterns of water use that include uncertainty (i.e., 

extrapolation and projection error) but nevertheless improve upon uncertainty-free 

estimations. This method of forecasting can be adapted to a wide range of socio-

economic and environmental applications, including land use/land cover change, small-

area population forecasting, energy and water demand, and modeling the spread of 

disease.
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Figure captions 

Figure 1: Residential water duty data (liters/km2) for the years 1996, 2000, and 2004. 

 

Figure 2: Population density data (People/km2) for the census tracts of the year 2000. 

 

Figure 3: Maricopa Association of Governments (MAG) population projections 

(People/km2) by Socioeconomic Analysis Zone (SAZ) for the years 2010, 2020, 2025, 

and 2030. 

 

Figure 4: Mean square estimation errors of three space-time geostatistical methods over 5 

different cases representing various forecasting situations. 

 

Figure 5: A matrix of experimental (circles) and modeled (plain curve) covariances used 

for the second validation study: (a) covariance for log-RWD, (b) cross-covariance 

between log-RWD and log-population density, and (c) covariance for log-population 

density. 

 

Figure 6: 1000 sets of percent reduction in MSE (each dot) (a) from Co-kriging to BME 

and (b) from Kriging with measurement error to BME. 

 

Figure 7: Experimental covariances (circles), an exponential covariance model (solid 

curve), an experimental nugget indicating an average of projection errors (thick vertical 
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line) for SAZ log-population density of the years (a) 2010, (b) 2020, (c) 2025, and (d) 

2030. 

 

Figure 8: log-RWD versus log-population density observed for the year 2000 (dots), first 

(solid curve) and second (dotted curve) order statistical moments. 

 

Figure 9: BME processes historical hard data and future soft data (equation 9) to produce 

its forecasting maps of Phoenix’s water duties (liters/km2) in between 2005 and 2030. 

Among the 26 snapshots created, we show only six maps of the years 2005, 2010, 2015, 

2020, 2025, and 2030 for illustration purposes. 

 



 30 

Tables 
 
Table 1: One-way ANOVA output to test method effects on MSE 

Method Least Squares 
Mean MSE Standard Error Pr>| t | 

Co-kriging 1.5234E16 7.4612E13 <.0001 
Kriging with 
measurement 

error 
1.3371E16 7.4612E13 <.0001 

BME 1.3373E16 7.4612E13 <.0001 
Least Squares Means for effect Method 
Pr>| t | for H0 : LSMean(i)=LSMean(j) 

i/j Co-kriging Kriging with 
measurement error BME 

Co-kriging  <.0001 <.0001 
Kriging with 
Measurement 

error 
<.0001  0.9879 

BME <.0001 0.9879  
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Table 2: Experimental nugget by year 

Year Experimental Nugget See Figure 
2010 2.8515 7a 
2020 1.5566 7b 
2025 1.0526 7c 
2030 1.0067 7d 
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