3,186 research outputs found
Current-Induced Resonant Motion of a Magnetic Vortex Core: Effect of Nonadiabatic Spin Torque
The current-induced resonant excitation of a magnetic vortex core is
investigated by means of analytical and micromagnetic calculations. We find
that the radius and the phase shift of the resonant motion are not correctly
described by the analytical equations because of the dynamic distortion of a
vortex core. In contrast, the initial tilting angle of a vortex core is free
from the distortion and determined by the nonadiabaticity of the spin torque.
It is insensitive to experimentally uncontrollable current-induced in-plane
Oersted field. We propose that a time-resolved imaging of the very initial
trajectory of a core is essential to experimentally estimate the
nonadiabaticity.Comment: 4 pages, 4 figure
Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling
Magnetization dynamics in a ferromagnet can induce a spin-dependent electric
field through spin motive force. Spin current generated by the spin-dependent
electric field can in turn modify the magnetization dynamics through
spin-transfer torque. While this feedback effect is usually weak and thus
ignored, we predict that in Rashba spin-orbit coupling systems with large
Rashba parameter , the coupling generates the spin-dependent
electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial
\vec{m}/\partial t)], which can be large enough to modify the magnetization
dynamics significantly. This effect should be relevant for device applications
based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure
Spin-wave propagation in the presence of inhomogeneous Dzyaloshinskii-Moriya interactions
We theoretically investigate spin-wave propagation through a magnetic metamaterial with spatially modulated Dzyaloshinskii-Moriya interaction. We establish an effective Schrodinger equation for spin waves and derive boundary conditions for spin waves passing through the boundary between two regions having different Dzyaloshinskii-Moriya interactions. Based on these boundary conditions, we find that the spin wave can be amplified at the boundary and the spin-wave band gap is tunable either by an external magnetic field or the strength of Dzyaloshinskii-Moriya interaction, which offers a spin-wave analog of the field-effect transistor in traditional electronics.112sciescopu
Charge Transfer Induced Molecular Hole Doping into Thin Film of Metal-Organic-Frameworks
Despite the highly porous nature with significantly large surface area, metal
organic frameworks (MOFs) can be hardly used in electronic, and optoelectronic
devices due to their extremely poor electrical conductivity. Therefore, the
study of MOF thin films that require electron transport or conductivity in
combination with the everlasting porosity is highly desirable. In the present
work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity
are synthesized using layer-by-layer and doctor blade coating techniques
followed by iodine doping. The as-prepared and doped films are characterized
using FE-SEM, EDX, UV/Visible spectroscopy, XPS, current-voltage measurement,
photoluminescence spectroscopy, cyclic voltammetry, and incident photon to
current efficiency measurements. In addition, the electronic and semiconductor
property of the MOF films are characterized using Hall Effect measurement,
which reveals that in contrast to the insulator behavior of the as-prepared
MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by
charge transfer induced hole doping into the frameworks. The observed charge
transfer induced hole doping phenomenon is also confirmed by calculating the
densities of states of the as-prepared and iodine doped MOFs based on density
functional theory. Photoluminescence spectroscopy demonstrate an efficient
interfacial charge transfer between TiO2 and iodine doped MOFs, which can be
applied to harvest solar radiations.Comment: Main paper (19 pages, 6 figures) and supplementary information (15
pages, 10 figures), accepted in ACS Appl. Materials & Interface
- …