26 research outputs found

    Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR

    Get PDF
    AbstractThree-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier–Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer

    Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

    Get PDF
    AbstractThe prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant

    The characteristics and visualization of critical heat flux of R-134a flowing in a vertical annular geometry with spacer grids

    No full text
    In the present paper, critical heat flux (CHF) experiments of forced convection boiling were performed to investigate the CHF characteristics of a vertical annular channel with one heated rod and four spacer grids for new refrigerant R-134a. The experiments were conducted under outlet pressure of 11.6, 13, 16 and 20 bar, mass fluxes of 100-600 kg/m2 s, and inlet temperatures of 25-40 ??C. The parametric trend of the CHF data was well consistent with previous understanding in water. The comparison between the present results with effect of the flow obstacle enhancing CHF and water data in similar geometry shows R-134a can be a modeling fluid for simulating water CHF in high pressure and high temperature condition even for annular geometry. The direct observation of flowing bubble behaviors contributes to enhancing our understanding on the effect of flow obstacles for flow boiling heat transfer.close3

    A Preliminary Research Study for Distribution Characteristics and Sources of Indoor Air Pollutants in the Valuable Archive of the National Library of Korea

    No full text
    Important records can be damaged directly and indirectly. Their restoration, if possible, is difficult as it is very time-consuming and costly. Although measures have been taken to permanently preserve records, most studies focus on preventing short-term damage from physical or biological factors and not on preventive measures against chemical damage from long-term polluted air exposure. This study investigated the types, concentrations, and distribution characteristics of hazardous chemicals present in the valuable archive of the National Library of Korea (NLK) and identified the sources of these pollutants. Mean SO2, NOX, CO, CO2, and total volatile organic compound (TVOC) concentrations were 1.49 ± 0.44 ppb, 30.52 ± 19.70 ppb, 0.75 ± 0.21 ppm, 368.91 ± 32.23 ppm, and 320.03 ± 44.20 µg/m3, respectively, meeting the Ministry of the Interior and Safety (MOIS) of Korea standards. Toluene (66.43 ± 10.69 µg/m3) and acetaldehyde (157.23 ± 6.43 µg/m3) were present at the highest concentrations, respectively. Two principal components were extracted via a principal component analysis; the primary component (66%) was closely related to outdoor pollution sources and the secondary component (33%) to indoor sources. Results contribute to establishing air quality standards and management measures for preservation of this archive

    Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Get PDF
    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper

    A Preliminary Safety Analysis for the Prototype Gen IV Sodium-Cooled Fast Reactor

    Get PDF
    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents

    A new defected ground structure with islands and equivalent circuit model

    No full text
    A novel defected ground structure with islands (DGSI) and its equivalent circuit model is proposed. Two islands are placed at both sides of microstrip line on the upper plane where DCS is realized on the bottom plane. The equivalent circuit is composed of one pair of open stub and short stub, which are connected to each other. The equivalent circuit elements are extracted from a simple circuit analysis method. In order to show the validity of the proposed DGSI and its equivalent circuit model, several EM simulation results on DGSI are compared to the corresponding S-parameters obtained from the circuit simulation using the equivalent model. © 2005 IEEE

    Identification of Enterococcus faecalis antigens specifically expressed in vivo

    No full text
    Objectives Molecular mechanism of the pathogenicity of Enterococcus faecalis (E. faecalis), a suspected endodontic pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here we report the identification of in vivo expressed antigens of E. faecalis by using a novel immunoscreening technique called change-mediated antigen technology (CMAT) and an experimental animal model of endodontic infection. Materials and Methods Among 4,500 E. coli recombinant clones screened, 19 positive clones reacted reproducibly with hyperimmune sera obtained from rabbits immunized with E. faecalis cells isolated from an experimental endodontic infection. DNA sequences from 16 of these in vivo-induced (IVI) genes were determined. Results Identified protein antigens of E. faecalis included enzymes involved in housekeeping functions, copper resistance protein, putative outer membrane proteins, and proteins of unknown function. Conclusions In vivo expressed antigens of E. faecalis could be identified by using a novel immune-screening technique CMAT and an experimental animal model of endodontic infection. Detailed analysis of these IVI genes will lead to a better understanding of the molecular mechanisms involved in the endodontic infection of E. faecalis

    Predisposition to apoptosis in keratin 8-null liver is related to inactivation of NF-κB and SAPKs but not decreased c-Flip

    Get PDF
    Summary Keratin 8 and 18 (K8/K18) are major intermediate filament proteins of liver hepatocytes. They provide mechanical and nonmechanical stability, thereby protecting cells from stress. Hence, K8-null mice are highly sensitive to Fas-mediated liver cell apoptosis. However, the role of c-Flip protein in K8-null related susceptibility to liver injury is controversial. Here we analyzed c-Flip protein expression in various K8 or K18 null/mutant transgenic livers and show that they are similar in all analyzed transgenic livers and that previously reported c-Flip protein changes are due to antibody cross-reaction with mouse K18. Furthermore, analysis of various apoptosis- or cell survival-related proteins demonstrated that inhibition of phosphorylation of NF-κB and various stress activated protein kinases (SAPKs), such as p38 MAPK, p44/42 MAPK and JNK1/2, is related to the higher sensitivity of K8-null hepatocytes whose nuclear NF-κB is rapidly depleted through Fas-mediated apoptosis. Notably, we found that NF-κB and the studied protein kinases are associated with the K8/K18 complex and are released upon phosphorylation. Therefore, interaction of keratins with cell survival-related protein kinases and transcription factors is another important factor for hepatocyte survival
    corecore