18 research outputs found

    Compositional assessment of carotenoid-biofortified rice using substantial equivalence

    Get PDF
    One important aspect in assessing the safety of genetically modified (GM) crops for human consumption is characterizing their nutrient composition. A β-carotene-biofortified rice was generated by inserting phytoene synthase (Psy) and carotene desaturase (Crtl) genes isolated from Capsicum and Pantoea into the genome of a conventional variety of rice (Nakdongbyeo). Nutrients (proximates, amino acids, fatty acids, minerals, and vitamins), anti-nutritive components (trypsin inhibitors and phytic acid), and ferulic acid in GM rice were compared with those in the parent line Nakdongbyeo. Statistical comparisons to test for equivalence showed that all of the analyzed components in the GM plants were equivalent to those in its non-transgenic counterpart, and most nutritional components fell within the range of values reported for other commercial lines, indicating the safety of the GM plant.Key words: Genetically modified crop, β-Carotene, Transgenic rice, Nutrient, Substantial equivalence

    BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice

    No full text
    A disease forecast model for bacterial grain rot (BGR) of rice, which is caused by Burkholderia glumae, was developed in this study. The model, which was named BGRcast, determined daily conduciveness of weather conditions to epidemic development of BGR and forecasted risk of BGR development. All data that were used to develop and validate the BGRcast model were collected from field observations on disease incidence at Naju, Korea during 1998-2004 and 2010. In this study, we have proposed the environmental conduciveness as a measure of conduciveness of weather conditions for population growth of B. glumae and panicle infection in the field. The BGRcast calculated daily environmental conduciveness, Ci, based on daily minimum temperature and daily average relative humidity. With regard to the developmental stages of rice plants, the epidemic development of BGR was divided into three phases, i.e., lag, inoculum build-up and infection phases. Daily average of Ci was calculated for the inoculum build-up phase (Cinf) and the infection phase (Cinc). The Cinc and Cinf were considered environmental conduciveness for the periods of inoculum build-up in association with rice plants and panicle infection during the heading stage, respectively. The BGRcast model was able to forecast actual occurrence of BGR at the probability of 71.4% and its false alarm ratio was 47.6%. With the thresholds of Cinc = 0.3 and Cinf = 0.5, the model was able to provide advisories that could be used to make decisions on whether to spray bactericide at the pre-and post-heading stage.OAIID:oai:osos.snu.ac.kr:snu2015-01/102/0000001822/1ADJUST_YN:YEMP_ID:A001887DEPT_CD:5321CITE_RATE:.718FILENAME:bact grain rot.pdfDEPT_NM:농생명공학부SCOPUS_YN:YCONFIRM:

    Static and dynamic fracture analysis for the interface crack of isotropic-orthotropic bimaterial

    No full text
    In the present study, interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static cracks are greater when α=90° (fibers perpendicular to the interface) than when α=0° (fibers parallel to the interface), and those when α=90° are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating cracks are greater when α=0° than α=90°. For the velocity ranges (0.1 \u3c c/cs1\u3c0.7) observed in this study, the complex dynamic stress intensity factor | KD | increases with crack speed c, however, the rate of increase of | KD | with crack speed is not as drastic as that reported for homogeneous materials

    Correction of the Buttonhole Deformity

    No full text

    Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis

    Get PDF
    Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ6-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ5-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES) under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3) and docosatetraenoic acid (22:4 n-6) as well as eicosapentaenoic acid (20:5 n-3) and arachidonic acid (20:4 n-6) in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3) could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible

    Discriminating the molecular basis of hepatotoxicity using the large-scale characteristic molecular signatures of toxicants by expression profiling analysis

    No full text
    Predicting the potential human health risk posed by chemical stressors has long been a major challenge for toxicologists, and the use of microarrays to measure responses to toxicologically relevant genes, and to identify selective, sensitive biomarkers of toxicity is a major application of predictive and discovery toxicology. To investigate this possibility, we investigated whether carcinogens (at doses known to induce liver tumors in chronic exposure bioassays) deregulate characteristic sets of genes in mice. Male C3H/He mice were dosed with two hepatocarcinogens (vinyl chloride (VC, 50-25 mg/kg), aldrin (AD, 0.8-0.4 mg/kg)), or two non-hepatocarcinogens (copper sulfate (CS, 150-60 mg/kg), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T, 150-60 mg/kg)). Large-scale molecular changes elicited by these four hepatotoxicants in liver tissues were analyzed using DNA microarray. Three days after administration, no significant phenotypic changes were induced by these four different hepatotoxicants in terms of histological examination or blood biochemical assay. However, unsupervised hierarchical analysis of gene expressional changes induced by hepatotoxicants resulted in two major gene subclusters on dendrogram, i.e., a carcinogen (VN, AD) and non-carcinogen group (CS, 2,4,5-T), and also revealed that distinct molecular signatures exist. These signatures were founded on well-defined functional gene categories and may differentiate genotoxic and non-genotoxic carcinogens. Furthermore, Venn diagram analysis allowed us to identify carcinogen and non-carcinogen-associated molecular signatures. Using statistical methods, we analyzed outlier genes for four different classes (genotoxic-, non-genotoxic-carcinogen, genotoxic-, non-genotoxic non-carcinogen) in terms of their potential to predict different modes-of-action. In conclusion, the identification of large-scale molecular changes in different hepatocarcinogen exposure models revealed that different types of hepatotoxicants are associated with different epigenetic changes and molecular pathways and that these large-scale characteristic molecular changes could be used as predictable toxicity markers
    corecore