1,127 research outputs found

    A condition for first order phase transitions in quantum mechanical tunneling models

    Get PDF
    A criterion is derived for the determination of parameter domains of first order phase transitions in quantum mechanical tunneling models. The criterion is tested by application to various models, in particular to some which have been used recently to explore spin tunneling in macroscopic particles. In each case agreement is found with previously heuristically determined domains.Comment: 13 pages, 5 figure

    Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

    Get PDF
    We present a novel approach for finding and evaluating structural models of small metallic nanoparticles. Rather than fitting a single model with many degrees of freedom, the approach algorithmically builds libraries of nanoparticle clusters from multiple structural motifs, and individually fits them to experimental PDFs. Each cluster-fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles

    Finite Temperature Theory of Metastable Anharmonic Potentials

    Full text link
    The decay rate for a particle in a metastable cubic potential is investigated in the quantum regime by the Euclidean path integral method in semiclassical approximation. The imaginary time formalism allows one to monitor the system as a function of temperature. The family of classical paths, saddle points for the action, is derived in terms of Jacobian elliptic functions whose periodicity sets the energy-temperature correspondence. The period of the classical oscillations varies monotonically with the energy up to the sphaleron, pointing to a smooth crossover from the quantum to the activated regime. The softening of the quantum fluctuation spectrum is evaluated analytically by the theory of the functional determinants and computed at low TT up to the crossover. In particular, the negative eigenvalue, causing an imaginary contribution to the partition function, is studied in detail by solving the Lam\`{e} equation which governs the fluctuation spectrum. For a heavvy particle mass, the decay rate shows a remarkable temperature dependence mainly ascribable to a low lying soft mode and, approaching the crossover, it increases by a factor five over the predictions of the zero temperature theory. Just beyond the peak value, the classical Arrhenius behavior takes over. A similar trend is found studying the quartic metastable potential but the lifetime of the latter is longer by a factor ten than in a cubic potential with same parameters. Some formal analogies with noise-induced transitions in classically activated metastable systems are discussed.Comment: European Physical Journal B EDP Sciences, Societ`a Italiana di Fisica, Springer-Verlag 200

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    Vacuum energy in a spherically symmetric background field

    Get PDF
    The vacuum energy of a scalar field in a spherically symmetric background field is considered. It is expressed through the Jost function of the corresponding scattering problem. The renormalization is discussed in detail and performed using the uniform asymptotic expansion of the Jost function. The method is demonstrated in a simple explicit example.Comment: 14 pages, 1 Postscript figur

    Spectral Energy Distributions of Local Luminous And Ultraluminous Infrared Galaxies

    Get PDF
    Luminous and ultraluminous infrared galaxies ((U)LIRGs) are the most extreme star forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison to their more numerous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths, and spectral energy distributions (SEDs) for a sample of 53 nearby LIRGs and 11 ULIRGs spanning log (LIR/Lsun) = 11.14-12.57 from the flux-limited Great Observatories All-sky LIRG Survey (GOALS). The SEDs for all objects are similar in that they show a broad, thermal stellar peak and a dominant FIR thermal dust peak, where nuLnu(60um) / nuLnu(V) increases from ~2-30 with increasing LIR. When normalized at IRAS-60um, the largest range in the luminosity ratio, R(lambda)=log[nuLnu(lambda)/nuLnu(60um)] observed over the full sample is seen in the Hard X-rays (HX=2-10 keV). A small range is found in the Radio (1.4GHz), where the mean ratio is largest. Total infrared luminosities, LIR(8-1000um), dust temperatures, and dust masses were computed from fitting thermal dust emission modified blackbodies to the mid-infrared (MIR) through submillimeter SEDs. The new results reflect an overall ~0.02 dex lower luminosity than the original IRAS values. Total stellar masses were computed by fitting stellar population synthesis models to the observed near-infrared (NIR) through ultraviolet (UV) SEDs. Mean stellar masses are found to be log(M/Msun) = 10.79+/-0.40. Star formation rates have been determined from the infrared (SFR_IR~45Msun/yr) and from the monochromatic UV luminosities (SFR_UV~1.3Msun/yr), respectively. Multiwavelength AGN indicators have be used to select putative AGN: about 60% of the ULIRGs would have been classified as an AGN by at least one of the selection criteria.Comment: 39 pages, including 12 figures and 11 tables; accepted for publication in ApJ
    • …
    corecore