327 research outputs found

    Accerlerating acculturation through tacit knowledge flows: refining a grounded theory model

    Get PDF
    DOI 10.1108/03055721011071430Purpose - Intercultural knowledge flows are critical to global enterprise performance, but the impact of knowledge management theory on such intercultural flows remains limited. This paper seeks to address this issue

    Nanostructured Transition Metal Compounds as Highly Efficient Electrocatalysts for Dye-Sensitized Solar Cells

    Get PDF
    Nowadays, the requirement of energy increases every year, however, the major energy resource is fossil fuel, a limiting source. Dye-sensitized solar cells (DSSCs) are a promising renewable energy source, which could be the major power supply for the future. Recently, the transition metal component has been demonstrated as potential material for counter electrode of platinum (Pt)-free DSSCs owing to their excellent electrocatalytic ability and their abundance on earth. Furthermore, the transition metal components exist different special nanostructures, which provide high surface area and various electron transport routs during electrocatalytic reaction. In this chapter, transition metal components with different nanostructures used for the application of electrocatalyst in DSSCs will be introduced; the performance of electrocatalyst between intrinsic heterogeneous rate constant and effective electrocatalytic surface area are also be clarified. Final, the advantages of the electrocatalyst with different dimensions (i.e., one to three dimension structures) used in DSSCs are also summarized in the conclusion

    Drug Resistance via Feedback Activation of Stat3 in Oncogene-Addicted Cancer Cells

    Get PDF
    SummaryPathway-targeted cancer drugs can produce dramatic responses that are invariably limited by the emergence of drug-resistant cells. We found that many drug-treated “oncogene-addicted” cancer cells engage a positive feedback loop leading to Stat3 activation, consequently promoting cell survival and limiting overall drug response. This was observed in cancer cells driven by diverse activated kinases, including EGFR, HER2, ALK, and MET, as well as mutant KRAS. Specifically, MEK inhibition led to autocrine activation of Stat3 via the FGF receptor and JAK kinases, and pharmacological inhibition of MEK together with JAK and FGFR enhanced tumor regression. These findings suggest that inhibition of a Stat3 feedback loop may augment the response to a broad spectrum of drugs that target pathways of oncogene addiction

    Nonlinear forced change and nonergodicity: The case of ENSO-Indian monsoon and global precipitation teleconnections

    Full text link
    We study the forced response of the teleconnection between the El Nino-Southern Oscillation (ENSO) and global precipitation in general and the Indian summer monsoon (IM) in particular in the Max Planck Institute Grand Ensemble. The forced response of the teleconnection is defined as the time-dependence of a correlation coefficient evaluated over the ensemble. The ensemble-wise variability is taken either wrt. spatial averages or dominant spatial modes in the sense of Maximal Covariance Analysis or Canonical Correlation Analysis or EOF analysis. We find that the strengthening of the ENSO-IM teleconnection is robustly or consistently featured in view of all four teleconnection representations, whether sea surface temperature (SST) or sea level pressure (SLP) is used to characterise ENSO, and both in the historical period and under the RCP8.5 forcing scenario. The main contributor to this strengthening in terms of a linear regression model is the regression coefficient, which can outcompete even a declining ENSO variability in view of using the SLP. We also find that the forced change of the teleconnection is typically nonlinear by (1) formally rejecting the hypothesis that ergodicity holds, i.e., that expected values of temporal correlation coefficients with respect to the ensemble equal the ensemble-wise correlation coefficient itself, and also showing that (2) the trivial contributions of the forced changes of e.g. the mean SST and/or precipitation to temporal correlations are insignificant here. We also provide, in terms of the test statistics, global maps of the degree of nonlinearity/nonergodicity of the forced change of the teleconnection between local precipitation and ENSO

    Structural Engineering on Pt-Free Electrocatalysts for Dye-Sensitized Solar Cells

    Get PDF
    In recent decades, plenty of nanomaterials have been investigated as electrocatalysts for the replacement of the expensive platinum (Pt) counter electrode in dye-sensitized solar cells (DSSCs). The key function of the electrocatalyst is to reduce tri-iodide ions to iodide ions at the electrolyte/counter electrode interface. The performance of the electrocatalyst is usually determined by two key factors, i.e., the intrinsic heterogeneous rate constant and the effective electrocatalytic surface area of the electrocatalyst. The intrinsic heterogeneous rate constant of the electrocatalyst varies by different types of materials, which can be roughly divided into five groups: non-Pt metals, carbons, conducting polymers, transition metal compounds, and their composites. The effective electrocatalytic surface area is determined by the nanostructure of the electrocatalyst. In this chapter, the nanostructural design and engineering on different types of Pt-free electrocatalysts will be systematically introduced. Also, the relationship between various nanostructures of electrocatalysts and the pertinent physical/electrochemical properties will be discussed

    Carbon-Based Nanocomposite Materials for High-Performance Supercapacitors

    Get PDF
    Lightweight, flexible, wearable, and portable electronic gadgets have drawn significant attention in modern electronics industry. To power these gadgets, great efforts have been made to develop highly efficient energy-storage equipment. Among various power sources, a supercapacitor, acting as a bridge between the conventional battery and electrolytic capacitor, has been considered a promising portable energy storage device because of its high power density, fast charge/discharge rate, adequate operational safety, and excellent working lifetime. Hybrid supercapacitors, which combine redox materials with carbon-based materials, exhibit tremendous potential to fulfill the requirement of practical applications. In this chapter, we will review recent reports focusing on composite materials (i.e. metal oxide, metal hydroxide, and metal dichalcogenide composited with carbon materials) for the application in supercapacitors. The conclusion and futuristic prospects and challenges of highly efficient supercapacitors are briefly discussed
    corecore