381 research outputs found
Chronic rhinosinusitis with nasal polyps in older adults : clinical presentation, pathophysiology, and comorbidity
Purpose of Review Chronic rhinosinusitis and nasal polyps (CRSwNP) is a common condition that significantly affects patients' life. This work aims to provide an up-to-date overview of CRSwNP in older adults, focusing on its aging-related clinical presentations, pathophysiology, and comorbidity associations including asthma. Recent Findings Recent large population-based studies using nasal endoscopy have shown that CRSwNP is a mostly late-onset disease. Age-related changes in physiologic functions, including nasal epithelial barrier dysfunction, may underlie the incidence and different clinical presentations of CRSwNP in older adults. However, there is still a paucity of evidence on the effect of aging on phenotypes and endotypes of CRSwNP. Meanwhile, late-onset asthma is a major comorbid condition in patients with CRSwNP; they frequently present with type 2 inflammatory signatures that are refractory to conventional treatments when they are comorbid. However, as they are more commonly non-atopic, causative factors other than classical atopic sensitization, such as Staphylococcus aureus specific IgE sensitization, are suggested to drive the type 2 inflammation. There are additional comorbidity associations in older patients with CRSwNP, including those with chronic otitis media and head and neck malignancy. Age is a major determinant for the incidence and clinical presentations of CRSwNP. Given the heterogeneity in phenotypes and endotypes, longitudinal investigations are warranted to elucidate the effects of aging on CRSwNP
Homological Properties of Hopf Algebras
The main aim of this dissertation is to prove a version of the result [Bro98, Proposition 2.3], following the outline suggested in that paper. This result has a distinctly homological flavour, and unsurprisingly relies quite heavily on homological algebra for its proof. We have also drawn upon a wider variety of mathematical techniques, mostly ring theory and Hopf algebraic methods in our discussion. As by-products of the proof, we get a condition for Galois extensions and Frobenius extensions to be equivalent, and also a generalisation of a well-known theorem by Larsson and Sweedler. We discuss this in more detail below. We state the proposition: Proposition. We let H he a Noetherian k-Hopf algebra, where k is an algebraically dosed field. Let K he a central affine sub-Hopf algebra of H with inj.dimK(K) = Krull dim(K) = m. Suppose further that H is a finitely generated K-module. Then inj.dimK(K) = Krull dim(K) = m. Throughout this thesis, inj.dim refers to the injective dimension of the module (defined in Definition 3.2) and Krull dim is the Krull dimension of a commutative Noetherian ring which we also define in Definition 3.2. We also note the fact that if a commutative Noetherian ring has finite injective dimension, then inj.dim(-) = Krull dim(-), as above. The proof is split into four parts, which we summarise briefly here. In the first part, we show that for any ring R which is a Frobenius extension over a subring S the injective dimension of S as a module over itself is equal to the injective dimension of R as an 5-module. Proof of this is obtained from Nakayama and Tsuzuku's fundamental paper ([NT60]) and some basic facts about projective modules. In the second part, we prove that, in the notation above, H is Frobenius over K. This requires that we show H to be a Galois extension over K, which requires substantial preparation as discussed in Chapter 2. The key results come from Kreimer and Takeuchi's paper [KT81] and a paper by Schneider [Sch93]. This step also generalises the Larsson and Sweedler result mentioned before, which states that any finite-dimensional Hopf algebra is Erobenius over any sub-Hopf algebra. The third part shows that if is a Gorenstein ring. The fourth part uses some simple facts on projective modules to place the required restriction on the injective dimension of H as an H-module. These steps, taken together, prove the proposition. This proof is contained in the second section of Chapter 4. Chapter 1 is concerned with the basic definition of a Hopf algebra and discusses some of their basic properties, including comodules, invariants and coinvariants, and smash products. We also introduce Sweedler's sigma notation and use it to describe many Hopf algebraic properties. As indicated above. Chapter 2 contains the majority of the results needed to prove the proposition. We begin by defining and discussing normal sub-Hopf algebras and establish two key results which give an if and only if condition for a sub-Hopf algebra to be normal. This forms part of the proof of the proposition. The main point of the chapter, however, is to show that under certain conditions, Galois extensions are equivalent to Frobenius extensions. A key tool in proving this result is the notion of faithful flatness. We are interested in when a Hopf algebra is flat, faithfully flat, or free over a sub-Hopf algebra. There has been a substantial amount of work done in this area, some of which we discuss in detail, especially results by Schneider [Sch93]. This discussion forms the backbone of the chapter and establishes the crucial fact that the conditions in the proposition imply that H is faithfully flat over K. Finally, we discuss a result from Kreimer and Takeuchi's paper, which gives the condition for equivalence between Galois and Frobenius extensions that we require
IJA: An Efficient Algorithm for Query Processing in Sensor Networks
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm
Inhaled Corticosteroids and Placebo Treatment Effects in Adult Patients With Cough : A Systematic Review and Meta-analysis
Copyright Ā© 2019 The Korean Academy of Asthma, Allergy and Clinical Immunology Ā· The Korean Academy of Pediatric Allergy and Respiratory Disease.Peer reviewedPublisher PD
Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents
Existing studies examining the control of mesenchymal stem cell (MSC) differentiation into desired cell types have used a variety of biochemical reagents such as growth factors despite possible side effects. Recently, the roles of biomimetic microphysical environments have drawn much attention in this field. We studied MSC differentiation and changes in gene expression in relation to osteoblast-like cell and smooth muscle-like cell type resulting from various microphysical environments, including differing magnitudes of tensile strain and substrate geometries for 8 days. In addition, we also investigated the residual effects of those selected microphysical environment factors on the differentiation by ceasing those factors for 3 days. The results of this study showed the effects of the strain magnitudes and surface geometries. However, the genes which are related to the same cell type showed different responses depending on the changes in strain magnitude and surface geometry. Also, different responses were observed three days after the straining was stopped. These data confirm that controlling microenvironments so that they mimic those in vivo contributes to the differentiation of MSCs into specific cell types. And duration of straining engagement was also found to play important roles along with surface geometry
Association of Polymorphisms in Browzine Journal Cover Fshr, inha, Esr1, and Bmp15 With Recurrent Implantation Failure
Recurrent implantation failure (RIF) refers to two or more unsuccessful in vitro fertilization embryo transfers in the same individual. Embryonic characteristics, immunological factors, and coagulation factors are known to be the causes of RIF. Genetic factors have also been reported to be involved in the occurrence of RIF, and some single nucleotide polymorphisms (SNPs) may contribute to RIF. We examined SNPs i
Liquid crystal display using combined fringe and in-plane electric fields
A high performance liquid crystal display using combined fringe and in-plane horizontal electric fields is proposed. The strong electric fields cause more liquid crystals to reorient almost in plane above and between the pixel electrodes. As a result, the operation voltage is lower and transmittance is higher than those of fringe field switching and in-plane switching modes, while preserving a wide viewing angle. Such a high performance device is particularly attractive for large panel liquid crystal displays
Ultrasound-guided Lateral Femoral Cutaneous Nerve Block in Meralgia Paresthetica
Meralgia paresthetica is a rarely encountered sensory mononeuropathy characterized by paresthesia, pain or sensory impairment along the distribution of the lateral femoral cutaneous nerve (LFCN) caused by entrapment or compression of the nerve as it crossed the anterior superior iliac spine and runs beneath the inguinal ligament. There is great variability regarding the area where the nerve pierces the inguinal ligament, which makes it difficult to perform blind anesthetic blocks. Ultrasound has developed into a powerful tool for the visualization of peripheral nerves including very small nerves such as accessory and sural nerves. The LFCN can be located successfully, and local anesthetic solution distribution around the nerve can be observed with ultrasound guidance. Our successfully performed ultrasound-guided blockade of the LFCN in meralgia paresthetica suggests that this technique is a safe way to increase the success rate
- ā¦