16,350 research outputs found

    Effects of squeezing on quantum nonlocality of superpositions of coherent states

    Full text link
    We analyze effects of squeezing upon superpositions of coherent states (SCSs) and entangled coherent states (ECSs) for Bell-inequality tests. We find that external squeezing can always increase the degrees of Bell violations, if the squeezing direction is properly chosen, for the case of photon parity measurements. On the other hand, when photon on/off measurements are used, the squeezing operation can enhance the degree of Bell violations only for moderate values of amplitudes and squeezing. We point out that a significant improvement is required over currently available squeezed SCSs in order to directly demonstrate a Bell-inequality violation in a real experiment.Comment: 7 pages, 4 figures, accepted for publication in Phys. Rev.

    Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits

    Get PDF
    We propose a scheme to realize deterministic quantum teleportation using linear optics and hybrid qubits. It enables one to efficiently perform teleportation and universal linear-optical gate operations in a simple and near-deterministic manner using all-optical hybrid entanglement as off-line resources. Our analysis shows that our new approach can outperforms major previous ones when considering both the resource requirements and fault tolerance limits.Comment: 10 pages, 5 figures; extended version, title, abstract and figures changed, details added, to be published in Phys. Rev.

    Faithful test of non-local realism with entangled coherent states

    Full text link
    We investigate the violation of Leggett's inequality for non-local realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the non-local realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.Comment: 8 pages, 6 figures, to be published in Phys. Rev.

    Bound on distributed entanglement

    Full text link
    Using the convex-roof extended negativity and the negativity of assistance as quantifications of bipartite entanglement, we consider the possible remotely-distributed entanglement. For two pure states ϕAB\ket{\phi}_{AB} and ψCD\ket{\psi}_{CD} on bipartite systems ABAB and CDCD, we first show that the possible amount of entanglement remotely distributed on the system ACAC by joint measurement on the system BDBD is not less than the product of two amounts of entanglement for the states ϕAB\ket{\phi}_{AB} and ψCD\ket{\psi}_{CD} in two-qubit and two-qutrit systems. We also provide some sufficient conditions, for which the result can be generalized into higher-dimensional quantum systems.Comment: 5 page

    Quantification of Macroscopic Quantum Superpositions within Phase Space

    Full text link
    Based on phase-space structures of quantum states, we propose a novel measure to quantify macroscopic quantum superpositions. Our measure simultaneously quantifies two different kinds of essential information for a given quantum state in a harmonious manner: the degree of quantum coherence and the effective size of the physical system that involves the superposition. It enjoys remarkably good analytical and algebraic properties. It turns out to be the most general and inclusive measure ever proposed that it can be applied to any types of multipartite states and mixed states represented in phase space.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Metabolite essentiality elucidates robustness of Escherichia coli metabolism

    Full text link
    Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.Comment: Supplements available at http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd
    corecore