56 research outputs found

    Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA

    Multiple testing correction in linear mixed models

    Get PDF
    BACKGROUND: Multiple hypothesis testing is a major issue in genome-wide association studies (GWAS), which often analyze millions of markers. The permutation test is considered to be the gold standard in multiple testing correction as it accurately takes into account the correlation structure of the genome. Recently, the linear mixed model (LMM) has become the standard practice in GWAS, addressing issues of population structure and insufficient power. However, none of the current multiple testing approaches are applicable to LMM. RESULTS: We were able to estimate per-marker thresholds as accurately as the gold standard approach in real and simulated datasets, while reducing the time required from months to hours. We applied our approach to mouse, yeast, and human datasets to demonstrate the accuracy and efficiency of our approach. CONCLUSIONS: We provide an efficient and accurate multiple testing correction approach for linear mixed models. We further provide an intuition about the relationships between per-marker threshold, genetic relatedness, and heritability, based on our observations in real data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0903-6) contains supplementary material, which is available to authorized users

    The critical care management of poor-grade subarachnoid haemorrhage

    Full text link

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.

    Get PDF
    BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Nitric oxide diffusing capacity versus spirometry in the early diagnosis of emphysema in smokers

    No full text
    The diffusion capacity for nitric oxide (DLNO) is independent of Pulmonary capillary blood volume and equals the membrane diffusing capacity. Therefore the DLNO could be more sensitive in detecting alveolar destruction than the DLCO. We measured flow-volumes curves, DLNO, DLCO, the transfer coefficients KNO (DLNC/VA) and KCO (DLCO/VA) and performed computed tomography (CT) scans in 263 randomly selected heavy smokers. Subjects with areas >= 1% of the total lung volume showing an attenuation <-950 Hounsfield Units were considered to have emphysema. In 36 subjects emphysema was diagnosed with CT, a low KNO was present in 94 subjects, and in 95 subjects a FEV1/FVC ratio <70% was seen. The area under the ROC curve for detection CT-based emphysema was 0.894 for the KNO, 0.822 for the KCO and 0.795 for FEV1/FVC, meaning that the KNO has a slightly higher sensitivity to detect emphysema than the KCO and FEV1/FVC. The positive predictive value of KNO however was tow (34.7%), white the negative predictive value of KNO was very high (98.2%), indicating an emphysema exclusion test. The DLNC/DLCO ratio is significantly higher in the study group compared to normal subjects. (C) 2009 Elsevier Ltd. All rights reserved

    A high-performance white-light-emitting-diodes based on nano-single crystal divanadates quantum dots

    No full text
    We report a high-performance phosphors-free white light-emitting-diodes (w-LEDs) using Ba(2)V(2)O(7) or Sr(2)V(2)O(7) quantum dots that directly heteroepitaxially grown on common quartz substrates by polymer assisted deposition (PAD). The quantum efficiency of quantum dots is as high as 95%. More importantly, electronic local functions, band structure and partial density of states have been firstly calculated to study the luminescent and heteroepitaxial growth mechanisms by the Ab-initio Simulation. Additionally, the glaring white light excited at a wavelength of 325 nm was experimentally observed, which unambiguously demonstrated that such quantum dots can be efficient w-LEDs for solid state lighting
    corecore