37,183 research outputs found

    Multiagent simple temporal problem: The arc-consistency approach

    Full text link
    Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. The Simple Temporal Problem (STP) is a fundamental temporal reasoning problem and has recently been extended to the Multiagent Simple Temporal Problem (MaSTP). In this paper we present a novel approach that is based on enforcing arc-consistency (AC) on the input (multiagent) simple temporal network. We show that the AC-based approach is sufficient for solving both the STP and MaSTP and provide efficient algorithms for them. As our AC-based approach does not impose new constraints between agents, it does not violate the privacy of the agents and is superior to the state-of-the-art approach to MaSTP. Empirical evaluations on diverse benchmark datasets also show that our AC-based algorithms for STP and MaSTP are significantly more efficient than existing approaches

    Performance comparison of thin-film composite forward osmosis membranes

    Full text link
    Forward osmosis (FO) is an emerging low-energy technology. Much effort was given on developing a new membrane material and engineering membrane structure to improve the performance of FO membranes. The performances of two newly developed polyamide-based thin-film composite (TFC) FO membranes were tested and compared with the commercially available cellulose triacetate (CTA) FO membrane. The intrinsic properties of the two TFC FO membranes determined in RO experiments indicate superior performance of the membranes. When tested in FO experiments, TFC membranes delivered consistent results, confirming their outstanding permeability and selectivity properties. The study shows that future studies on membrane fouling will be necessary to have a better understanding of membrane performance and to further optimize membrane properties. © 2013 Copyright Balaban Desalination Publications

    Cug2 is essential for normal mitotic control and CNS development in zebrafish.

    Get PDF
    Background: We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2), which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models. Results: To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS). Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate. Conclusions: Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders

    On redundancy in simple temporal networks

    Full text link
    © 2016 The Authors and IOS Press. The Simple Temporal Problem (STP) has been widely used in various applications to schedule tasks. For dynamical systems, scheduling needs to be efficient and flexible to handle uncertainty and perturbation. To this end, modern approaches usually encode the temporal information as an STP instance. This representation contains redundant information, which can not only take a significant amount of storage space, but also make scheduling inefficient due to the non-concise representation. In this paper, we investigate the problem of simplifying an STP instance by removing redundant information. We show that such a simplification can result in a unique minimal representation without loss of temporal information, and present an efficient algorithm to achieve this task. Evaluation on a large benchmark dataset of STP exhibits a significant reduction in redundant information for the involved instances

    Systemic inflammation and suicide risk: cohort study of 419 527 Korean men and women

    Get PDF
    BACKGROUND: Data from only one study have been used to examine the relationship between systemic inflammation and later suicide risk, and a strong positive association was apparent. More research is needed, particularly looking at gender, not least because women are seemingly more vulnerable to inflammation-induced mood changes than men. METHODS: The Korean Cancer Prevention Study had a cohort of over 1 million individuals aged 30-95 years at baseline examination between 1992 and 1995, when white blood cell count, our marker of systemic inflammation, was assessed. RESULTS: A mean of 16.6 years of mortality surveillance gave rise to 1010 deaths from suicide in 106 643 men, and 1019 deaths from suicide in 312 884 women. There was little evidence of an association between our inflammation marker and suicide mortality in men after multiple adjustments. In women, however, those in the second inflammation quartile and higher experienced around 30% increase risk of death (HR 1.35; 95% CI: 1.11-1.64). CONCLUSIONS: Higher levels of systemic inflammation were moderately related to an elevated risk of suicide death in women but not in men

    Oral health and later coronary heart disease: Cohort study of one million people

    Get PDF
    AIMS: Systematic reviews report an association between poorer oral health and an increased risk of coronary heart disease. This contentious relationship may not be causal but existing studies have been insufficiently well powered comprehensively to examine the role of confounding, particularly by cigarette smoking. Accordingly, we sought to examine the role of smoking in generating the relationship between oral health and coronary heart disease in life-long non-smokers. METHODS AND RESULTS: In the Korean Cancer Prevention Study, 975,685 individuals (349,579 women) aged 30–95 years had an oral examination when tooth loss, a widely used indicator of oral health, was ascertained. Linkage to national mortality and hospital registers over 21 years of follow-up gave rise to 64,784 coronary heart disease events (19,502 in women). In the whole cohort, after statistical adjustment for age, there was a moderate, positive association between tooth loss and coronary heart disease in both men (hazard ratio for seven or more missing teeth vs. none; 95% confidence interval 1.08; 1.02, 1.14; Ptrend across tooth loss groups <0.0001) and women (1.09; 1.01, 1.18; Ptrend 0.0016). Restricting analyses to a subgroup of 464,145 never smokers (25,765 coronary heart disease events), however, resulted in an elimination of this association in men (1.01; 0.85, 1.19); Ptrend 0.7506) but not women (1.08; 0.99, 1.18; Ptrend 0.0086). CONCLUSION: In men in the present study, the relationship between poor oral health and coronary heart disease risk appeared to be explained by confounding by cigarette smoking so raising questions about a causal link

    The wavelet-NARMAX representation : a hybrid model structure combining polynomial models with multiresolution wavelet decompositions

    Get PDF
    A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is introduced for nonlinear system identification. Polynomial models play an important role in approximation theory, and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the basis functions have the property of localization in both time and frequency, outperform many other approximation schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise the global property of polynomials and the local property of wavelet representations simultaneously, in this study polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-output system might involve a large number of basis functions and therefore a great number of model terms. Experience reveals that only a small number of these model terms are significant to the system output. A new fast orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also introduced in this study to determine which terms should be included in the final model

    Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology

    Full text link
    This paper is an extended account of my "Introductory Plenary talk at Knots in Hellas 2016" conference We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators, here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and expanded. Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer, part of the series Proceedings in Mathematics & Statistics (PROMS

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    Enhanced spin-phonon-electronic coupling in a 5d oxide

    Get PDF
    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.open0
    corecore