1,172 research outputs found

    Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing

    Get PDF
    Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of ultrahigh areal number density solid-state MSCs (UHD SS-MSCs) on a chip via electrohydrodynamic (EHD) jet printing. This is, to the best of our knowledge, the first study to exploit EHD jet printing in the MSCs. The activated carbon-based electrode inks are EHD jet-printed, creating interdigitated electrodes with fine feature sizes. Subsequently, a drying-free, ultraviolet-cured solid-state gel electrolyte is introduced to ensure electrochemical isolation between the SS-MSCs, enabling dense SS-MSC integration with on-demand (in-series/in-parallel) cell connection on a chip. The resulting on-chip UHD SS-MSCs exhibit exceptional areal number density [36 unit cells integrated on a chip (area = 8.0 mm x 8.2 mm), 54.9 cells cm(-2)] and areal operating voltage (65.9 V cm(-2))

    A Spectral Line Survey from 138.3 to 150.7 GHZ toward Orion-KL

    Full text link
    We present the results of a spectral line survey from 138.3 to 150.7 GHz toward Orion-KL. The observations were made using the 14 m radio telescope of Taeduk Radio Astronomy Observatory. Typical system temperatures were between 500 and 700 K, with the sensitivity between 0.02−0.060.02 - 0.06 K in units of TA∗\rm T_A^*. A total of 149 line spectra are detected in this survey. Fifty lines have been previously reported, however we find 99 new detections. Among these new lines, 32 are `unidentified', while 67 are from molecular transitions with known identifications. There is no detection of H or He recombination lines. The identified spectra are from a total of 16 molecular species and their isotopic variants. In the range from 138.3 to 150.7 GHz, the strongest spectral line is the J=3-2 transition of CS molecule, followed by transitions of the H2CO\rm H_2CO, CH3OH\rm CH_3OH, CH3CN\rm CH_3CN, and SO2\rm SO_2. Spectral lines from the large organic molecules such as CH3OH\rm CH_3OH, CH3OCH3\rm CH_3OCH_3, HCOOCH3\rm HCOOCH_3, C2H5CN\rm C_2H_5CN and CH3CN\rm CH_3CN are prominent; with 80 % of the identified lines arising from transitions of these molecules. The rotational temperatures and column densities are derived using the standard rotation diagram analysis for CH3OH\rm CH_3OH (13CH3OH\rm ^{13}CH_3OH), HCOOCH3\rm HCOOCH_3, CH3CN\rm CH_3CN and SO2\rm SO_2 with 10∌270K\rm 10\sim 270 K and 0.2∌20×1015cm−2\rm 0.2\sim 20\times 10^{15} cm^{-2}. These estimates are fairly comparable to the values for the same molecule in other frequency regions by other studies.Comment: 10 figures, 2 tex files for a manuscript and tables, accepted to Ap

    Asset pricing with financial bubble risk

    Get PDF
    This paper characterizes systematic risk stemming from the possible occurrence of price bubbles and measures the impact of this additional risk factor on asset prices. Historical stock market behavior and recent empirical experience have led economists and policy makers to acknowledge that price bubbles in financial markets do occur and need to be accounted for in risk analysis. New econometric tools for analyzing mildly explosive behavior (Phillips and Magdalinos, 2007; Phillips et al., 2011) have made it possible to detect the presence of bubbles in data and to date stamp their origination and collapse, providing empirical confirmation of such episodes in recent data. The potential for price bubbles and market collapse provides another source of stock market risk and adds to the risk premium. We provide an analytic and empirical investigation of this additional risk factor. The standard present value model is extended to allow for possible price bubbles and the effects of integrating bubble behavior into a consumption-based asset pricing model are analyzed. The theory involves attention to the investor time horizon and a study of the validity of conventional log linear approximations in the presence of nonstationary and mildly explosive data. Finite decision horizons accommodate myopic investors and are a component of speculative behavior that focuses on short run market gains rather than long run effects of fundamentals. An econometric approach to estimate bubble risk effects is developed and the methods are applied to composite stock market index data, giving new model-based equity premium and market volatility estimates that more closely match the data than traditional consumption based asset pricing models

    Two-Component Fokker-Planck Models for the Evolution of Isolated Globular Clusters

    Get PDF
    Two-component (normal and degenerate stars) models are the simplest realization of clusters with a mass spectrum because high mass stars evolve quickly into degenerates, while low mass stars remain on the main-sequence for the age of the universe. Here we examine the evolution of isolated globular clusters using two-component Fokker-Planck (FP) models that include heating by binaries formed in tidal capture and in three-body encounters. Three-body binary heating dominates and the postcollapse expansion is self-similar, at least in models with total mass M <= 3 x 10^5 M_\odot, initial half-mass radius r_{h,i} >= 5 pc, component mass ratio m_2/m_1 <= 2, and number ratio N_1/N_2 <= 300 when m_2=1.4 M_\odot. We derive scaling laws for \rho_c, v_c, r_c, and r_h as functions of m_1/m_2, N, M, and time t from simple energy-balance arguments, and these agree well with the FP simulations. We have studied the conditions under which gravothermal oscillations (GTOs) occur. If E_{tot} and E_c are the energies of the cluster and of the core, respectively, and t_{rh} and t_c are their relaxation times, then \epsilon \equiv (E_{tot}/t_{rh})/(E_c/t_{rc}) is a good predictor of GTOs: all models with \epsilon>0.01 are stable, and all but one with \epsilon < 0.01 oscillate. We derive a scaling law for \epsilon against N and m_1/m_2 and compared with our numerical results. Clusters with larger m_2/m_1 or smaller N are stabler.Comment: 15 pages (LaTeX) with 8 figures. To appear in ApJ March 10, 1998 issu

    Observation of Scarred Modes in Asymmetrically Deformed Microcylinder Lasers

    Full text link
    We report observation of lasing in the scarred modes in an asymmetrically deformed microcavity made of liquid jet. The observed scarred modes correspond to morphology-dependent resonance of radial mode order 3 with their Q values in the range of 10^6. Emission directionality is also observed, corresponding to a hexagonal unstable periodic orbit.Comment: 4 pages, 6 figure

    Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    Full text link
    We find the static vortex solutions of the model of Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws.Comment: 7 pages, harvmac, To be published in Phys. Rev. D5

    Physical Properties of Tidal Features in Interacting Disk Galaxies

    Full text link
    We explore tidal interactions of a galactic disk with Toomre parameter Q ~ 2 embedded in rigid halo/bulge with a point mass companion moving in a prescribed parabolic orbit. Tidal interactions produce well-defined spiral arms and extended tidal features such as bridge and tail that are all transient, but distinct in nature. In the extended disks, strong tidal force is able to lock the perturbed epicycle phases of the near-side particles to the perturber, shaping them into a tidal bridge that corotates with the perturber. A tidal tail develops at the opposite side as strongly-perturbed, near-side particles overtake mildly-perturbed, far-side particles. The tail is essentially a narrow material arm with a roughly logarithmic shape, dissolving with time because of large velocity dispersions. Inside the disks where tidal force is relatively weak, on the other hand, a two-armed logarithmic spiral pattern emerges due to the kinematic alignment of perturbed particle orbits. While self-gravity makes the spiral arms a bit stronger, the arms never become fully self-gravitating, wind up progressively with time, and decay after the peak almost exponentially in a time scale of ~ 1 Gyr. The arm pattern speed varying with both radius and time converges to Omega-kappa/2 at late time, suggesting that the pattern speed of tidally-driven arms may depend on radius in real galaxies. We present the parametric dependences of various properties of tidal features on the tidal strength, and discuss our findings in application to tidal spiral arms in grand-design spiral galaxies. (Abridged)Comment: 49 pages, 17 figures, 1 table. Accepted for publication in Astrophysical Journal. PDF version with higher resolution figures is available at http://astro.snu.ac.kr/~shoh/research/publications/astroph/Tidally_Induced_Spiral_Structure.pd
    • 

    corecore