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Limit Theory for VARs with Mixed Roots Near Unity
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Limit theory is developed for nonstationary vector autoregression (VAR) with mixed roots
in the vicinity of unity involving persistent and explosive components. Statistical tests
for common roots are examined and model selection approaches for discriminating roots
are explored. The results are useful in empirical testing for multiple manifestations of
nonstationarity – in particular for distinguishing mildly explosive roots from roots that are
local to unity and for testing commonality in persistence.

Keywords Common roots; Local to unity; Mildly explosive; Mixed roots; Model selection;
Persistence; Tests of common roots.
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1. INTRODUCTION

Aman Ullah’s contributions cover a wide spectrum of econometrics with sustained
scientific work over the last four decades in finite sample theory, nonparametric
estimation, spatial econometrics, panel data modeling, financial econometrics, time series
and applied econometrics. His advanced textbook on Nonparametric Econometrics (1999,
with Adrian Pagan) has been particularly influential, helping to educate a generation
of econometricians in nonparametric methods and providing an accessible reference for
applied researchers. His monograph on Finite Sample Econometrics (2004) encapsulates
many of his own contributions to this subject and touches some of the wider reaches of
this difficult and vitally important field.

One field of econometrics that his work has less frequently touched is nonstationary
time series and unit root limit theory. Since the mid 1980s models with autoregressive
roots in the vicinity of unity have attracted much attention. These models are particularly
useful in empirical work with nonstationary series when it may be too restrictive to insist
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on the presence of roots precisely at unity or where mildly integrated or mildly explosive
behavior may be more relevant than unit roots. When multiple time series are considered,
it may be useful to allow simultaneously for various types of behavior in the individual
series: some roots that are local to unity (of the form 1 + c

n for fixed c and given sample
size n) and others that are mildly integrated (of the form 1 + b

kn
for fixed b < 0 and a

sequence kn → ∞ slower than n) or mildly explosive (of the form 1 + b
kn

for fixed b > 0
fixed and a similar sequence kn → ∞ slower than n). Roots of the latter form lie in a wide
vicinity of unity of radius O

(
k−1

n

)
and thereby accommodate some interesting alternatives

where the behavior of the process, including its limit behavior, differ from that of the
random wandering character associated with unit root processes. The mathematical form
of these roots involves the localizing coefficient b and a rate sequence kn which it is often
convenient to write in the exponent form kn = n� for some parameter � ∈ (0, 1).

Limit theory for regressors with roots local to unity developed early in the literature of
this field (Phillips, 1987b; Chan and Wei, 1987). More recent work has considered mildly
integrated and mildly explosive cases (Phillips and Magdalinos, 2007a,b; [PM7a&b]).
The latter theory has proved particularly relevant in studying data during periods of
financial exuberance (Phillips et al., 2011; Phillips and Yu, 2011; Phillips et al., 2015a,b).
In such cases, exuberance can be modeled in terms of a mildly explosive process with
an autoregressive root �n = 1 + b

kn
for which b > 0 and 1

kn
+ kn

n → 0. It is especially
interesting in practical work to study transitions between normal market behavior, which
can be represented in terms of a unit root or near unit root model, and exuberant
behavior. The emergence of market exuberance or an asset price bubble may then be
modeled as a structural break in which the (long run) autoregressive coefficient of the
model �n shifts from being near to unity to mildly explosive. Dating such a transition
amounts to date stamping the emergence of exuberance. A similar transition from an
exuberant to a mildly integrated or mean reverting process captures the collapse of an
asset price bubble and correspondingly enables the date stamping of bubble termination.
Phillips et al. (2011) and Phillips and Yu (2011) showed how to perform tests of these
hypotheses and construct date stamping algorithms that were empirically implemented
to characterize the 1990s Nasdaq bubble and the events leading up to and following the
recent global financial crisis. The work in those papers dealt with the special case where
the normal period model was a strict unit root process.

The methods of the present article allow for these methods to be extended to the wider
class of local to unity processes (for normal periods) and enable tests to be developed to
distinguish such roots from mildly explosive and mildly integrated roots, thereby widening
the range of potential empirical applications. In particular, the present article considers
time series models with mixed and common roots in the vicinity of unity. To simplify
exposition, we work with a bivariate model and analyze a case of primary interest where
there is one local to unit root and one mildly explosive root. Models of this type may be
anticipated when there are manifestations of nonstationarity in the data but somewhat
different individual characteristics in the two series. Or it may be that the behavior is
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common across the series—for instance in several asset prices—arising from a single
source of persistence or exuberance. We may be particularly interested empirically in
testing commonality in persistence or long run behavior across series, which occurs when
the autoregressive roots have the same value. The methods of the current article enable
empirical researchers to conduct such tests.

The remainder of the article is organized as follows. Section 2 considers mixed VARs
whose variates have mixed degrees of persistence that allow for a local to unit root
and a mildly explosive root. A limit theory for least squares regression and associated
Wald tests for commonality in the autoregressive coefficients is developed. Since the null
hypothesis is composite and involves the unknown (local to unity) localizing coefficient,
standard Wald tests have limit distributions that are parameter dependent and do not
have uniform size. Modified Wald statistics for testing commonality in long run behavior
are developed and shown to produce consistent tests. In particular, this modification
ensures that the tests are completely consistent in the sense that size goes to zero and
power to unity asymptotically. Section 3 considers a model selection approach and shows
that the Bayesian information criterion (BIC) criterion can also distinguish persistent and
mildly explosive behavior. Section 4 concludes. A technical Appendix includes subsidiary
lemmas and proofs of the main results.

2. MIXED VARIATE VARS

For simplicity of exposition, we consider the bivariate VAR(1) model

Xt = RnXt−1 + ut, t = 1, � � � , n, (2.1)

Rn =
[
�n 0
0 �n

]
, �n = 1 + c

n
, �n = 1 + b

kn
, b > 0, (2.2)

which we write in component form as[
X1t

X2t

]
=
[
�n 0
0 �n

] [
X1t−1

X2t−1

]
+
[

u1t

u2t

]
, t = 1, � � � , n (2.3)

with initialization X0 = op

(
k1/2

n

)
, and martingale difference innovations ut satisfying

Assumption 1 below. Our results may be extended to systems with weakly dependent
errors ut under conditions like those in the linear process framework of Magdalinos and
Phillips (2009), but all the key ideas follow as in the simpler VAR(1) model studied here
so we do not provide details. The coefficient �n = 1 + c

n is local to unity, �n = 1 + b
kn

is a
mildly explosive coefficient with b > 0 and the sequence kn satisfies 1

kn
+ kn

n → 0 as n →
∞. The power rate kn = n� for � ∈ (0, 1) satisfies this latter condition as well as conditions
we use later in the paper to develop consistent test procedures that involve slowly varying
functions Ln → ∞. In particular n�Ln

n → 0 for all such functions Ln.
Although �n

�n
→ 1 as n → ∞ (so both coefficients are in the vicinity of unity), kn(

�n
�n

−
1) → b > 0 and so �n is “further” from unity than �n for all finite c as n → ∞. In
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order to distinguish the mildly explosive behavior induced by �n from the persistence
induced by �n, statistical tests need to differentiate �n from �n for all finite c as n →
∞. As we will show, consistent tests can be constructed to discriminate between such
localizing coefficients. The fact that consistent tests of hypotheses involving localizing
coefficients is possible is relevant to practical work where there is substantial interest
in identifying exuberance in asset price data. It is also of theoretical interest because it
is well known that the localizing coefficient c cannot be consistently estimated in local
to unity specifications. By contrast, the localizing coefficient b in mildly integrated and
mildly explosive specifications is consistently estimable, and it is this feature of the model
that makes possible consistent testing of differences in localizing behavior.

The diagonal form of Rn in (2.1) conforms with standard practice in the stochastically
nonstationary literature. The presence of nonzero off diagonal elements in Rn induces higher
order stochastic trends or explosive mechanisms in the time series, at least unless those
coefficients are local to zero or negligible. Hence, nonzero off diagonal elements in Rn

result in amplified feedback across series in nonstationary autoregressions. It is therefore
conventional practice to retain a diagonal form Rn in developing a limit theory, as we do
here. Of course, if the context and characteristics of the series suggest the presence of such
feedbacks, then they may be included and their effects on the limit theory can be analyzed.

Assumption 1. The errors �ut� in (2.1) form a martingale difference sequence with
respect to the natural filtration �t = �(ut, ut−1, � � � ) satisfying

E�t−1

(
utu′

t

) = 	 and E�t−1 ‖ut‖ ≥ 
 a�s� for all t (2.4)

for some 
 > 0 and positive definite matrix 	 = � �11 �12
�21 �22 �, supt E ‖ut‖4 < ∞, and

max
1≤t≤n

E
(‖ut‖2 1 �‖ut‖ > n�

)→ 0 as n → ∞ (2.5)

for any sequence (n)n∈� such that n → ∞, and where

‖M‖ = max
i

{


1/2
i : i is an eigenvalue of M ′M

}
is the spectral norm of the matrix M .

As expected from the differences in the coefficients �n and �n in (2.3), the time series
components X1t and X2t have different orders of magnitude as n → ∞. These differences
translate into different rates of convergence of the sample moments of Xt and the
least squares regression components. To accommodate these differences, we employ the
(asymptotically equivalent) normalizing matrices

Dn :=
[

n 0
0 kn�

n
n

]
and Fn :=

[
n 0
0 �n

n
(�2

n−1)

]
�
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The unrestricted least squares regression estimate of Rn in (2.1) is written in standard
notation as R̂n = X′X−1(X′

−1X−1)
−1. This estimate is consistent and has a limit distribution

that is obtained from a combination of functional limit theory that applies to the
persistent components and central limit theory that applies to the mildly explosive
components, as detailed in the following result.

Theorem 2.1. As n → ∞,

(R̂n − Rn)Fn ⇒
[ ∫ 1

0 J1c(r)dB(r)∫ 1
0 J1c(r)2dr

Y (b)
X2(b)

]
:= �, (2.6)

where J1c(r) = ∫ r
0 ec(r−s)dB1(s), which is an Ornstein–Uhlenbeck (O-U) process,

B(r) = (B1(r), B2(r))′ is bivariate Brownian motion with variance matrix 	, X(b) =
(X1(b), X2(b))′ ≡ N (0, 1

2b 	), Y (b) =d X(b), and X(b) and Y (b) are independent. The

two column components
∫ 1

0 J1c(r)dB(r)∫ 1
0 J1c(r)2dr

and Y (b)
X2(b)

of the limiting matric variate � are

independent.

Remarks.

1. The two columns of R̂n − Rn converge at different rates, the first at the usual O(n)

rate for near integrated regressions and the second at the mildly explosive rate �n
n

(�2
n−1)

=
O(kn�

n
n) = O(knebn/kn). In particular, writing � = (�ij), we have

n(r̂11 − r11) ⇒ �11 =
∫ 1

0 J1c(r)dB1(r)∫ 1
0 J1c(r)2dr

, (2.7)

n(r̂21 − r21) ⇒ �21 =
∫ 1

0 J1c(r)dB2(r)∫ 1
0 J1c(r)2dr

, (2.8)

�n
n

(�2
n − 1)

(
r̂22 − r22

)⇒ �22 = Y2(b)

X2(b)
,

�n
n

(�2
n − 1)

(
r̂12 − r12

)⇒ �12 = Y1(b)

X2(b)
� (2.9)

2. The process J1c(r) = ∫ r
0 ec(r−s)dB1(s) that appears in the limit variate �11 involves

component B1(r) of B(r), so that the limit variate
∫ 1

0 J1c(r)dB1(r)/
∫ 1

0 J1c(r)2dr has a
standard local unit root distribution that is independent of �11 but is dependent on c.

3. The limit variate Y (b)
X2(b)

= (2b)1/2Y (b)
(2b)1/2X2(b)

=: Y
X2

is independent of b and we can therefore write
Y (b)
X2(b)

=: Y
X2

, where Y ≡ N (0, 	), X = (X1, X2)
′ ≡ N (0, 	), and X and Y are independent.

As indicated earlier, we may be interested in testing commonality of persistence
characteristics in the component series X1t and X2t. In the present case, setting Rn =
(rij) and under a maintained hypothesis that Rn is diagonal with roots local to unity,
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commonality amounts to testing the hypothesis H0 : r11 = r22 = 1 + c
n for some finite

c ∈ (−∞, ∞). The null can be written as H0 : a1
′vec(Rn) = 0 where a′

1 = [1, 0, 0, −1]
without explicitly specifying a common persistence parameter rn = 1 + c/n. H0 may also

be subsumed in a block test of Rn = rnI for some rn = 1 + c
n , which we can write in the

form HA
0 : A′vec(Rn) = 0 where we use row vectorization in the vec operator and

A′ =
⎡⎣1 0 0 −1

0 1 0 0
0 0 1 0

⎤⎦ =:
⎡⎣a′

1
a′

2
a′

3

⎤⎦ �

The standard Wald test of H0 uses the statistic

Wn = (a′
1vec
(
R̂n

))2
/a′

1

{
	̂ ⊗ (X′

−1X−1

)−1
}

a1,

and the corresponding block test of HA
0 has the form

W A
n = (A′vec

(
R̂n

))′ (
A′
{
	̂ ⊗ (X′

−1X−1

)−1
}

A
)−1 (

A′vec
(
R̂n

))
= (A′vec

(
nR̂n

))′ (
A′
{
	̂ ⊗ n2

(
X′

−1X−1

)−1
}

A
)−1 (

A′vec
(
nR̂n

))
,

where 	̂ = n−1
∑n

t=1 ûtû′
t is a consistent estimator of 	 based on the least squares residuals

ût = Xt − R̂nXt−1.

Under (2.3) the coefficients r11 = �n and r22 = �n, so that r11 − r22 = c
n − b

kn
∼ − b

kn
=

o(1), which is local to zero. Hence the model (2.2) actually corresponds to a local

alternative to the null H0.

Theorem 2.2. Under the null hypothesis H0 : Rn = rnI with rn = 1 + c
n , as n → ∞

Wn ⇒
(
a′

1�
)2

a′
1

{
	 ⊗
(∫ 1

0 Jc(r)Jc(r)′
)−1
}

a1

, (2.10)

and

W A
n ⇒ �′A

(
A′
{

	 ⊗
(∫ 1

0
Jc(r)Jc(r)′dr

)−1
}

A

)−1

A′�, (2.11)
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where Jc(r) = ∫ r
0 ec(r−s)dB(s), � = vec

(
�
)

and � = ∫ 1
0 dBJc

′(
∫ 1

0 JcJc
′)−1. Under the

alternative H1 : Rn = diag(�n, �n)

Wn, W A
n ∼

(
− n

kn
b
)2

�11

(∫ 1
0 J1c(r)2dr

)−1 �1 + op(1)� = Op

(
n
kn

)2

� (2.12)

Remarks.

4. The null limit distributions (2.10) and (2.11) are parameter dependent. The dependence
involves the localizing coefficient c and the variance matrix 	. When c = 0,

� =
∫ 1

0
dBB′
(∫ 1

0
BB′
)−1

= 	1/2

∫ 1

0
dVV ′
(∫ 1

0
VV ′
)−1

	−1/2 =: 	1/2�V 	−1/2,

where V ≡ BM(I2) is standard vector Brownian motion. The limit distribution of the
Wald statistic is then

Wn ⇒
(
a′

1

(
	1/2 ⊗ 	−1/2

)
�V

)2
a′

1

{
	 ⊗ 	−1/2

(∫ 1
0 VV ′
)−1

	−1/2

}
a1

= (b′�V )2

b′
{

I ⊗
(∫ 1

0 VV ′
)−1
}

b
, (2.13)

where �V = vec(�V ) and

b =
(
	1/2 ⊗ 	−1/2

)
a1(

a′
1

(
	 ⊗ 	−1

)
a1

)1/2

lies on the unit sphere b′b = 1. Thus, even in the case of a common unit root, the
null limit distribution of the test depends on 	, although this matrix is consistently
estimable by the residual moment matrix 	̂. In the general case, the limit distributions
(2.10) and (2.11) both have nuisance parameters (c, 	).

5. The parameter c is not consistently estimable and it is therefore not possible to
construct a standard test of the composite H0. However, modified tests are available
to distinguish H0 from alternatives that involve a mildly explosive component. For
instance, for some (possibly slowly varying) sequence Ln → ∞, the statistic WLn =
Wn/Ln →p 0 under H0 for all finite c. Then, under the alternative hypothesis H1, WLn =
Op( n2

k2
nLn

) which diverges for all sequences Ln → ∞ such that k2
nLn

n2 → 0. In particular,
if kn = O(n�) for some � ∈ (0, 1) and Ln is slowly varying at infinity, then WLn =
Op( n2(1−�)

Ln
) → ∞ as n → ∞ and tests based on the statistic WLn with any fixed critical
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value1 are consistent and have zero size asymptotically. Similar remarks apply to the
block test based on W A

Ln
= W A

n /Ln.
6. In view of (2.12), Wn, W A

n = Op( n2

k2
n
) and the Wald statistics diverge, as do the scaled

statistics WLn and W A
Ln

. So there is discriminatory power under the local alternative
H1 : r11 = �n = 1 + c

n , r22 = �n = 1 + b
kn

.

3. MODEL SELECTION

Another approach to testing for common roots in (2.1) is to apply model selection
methods. This involves estimating (2.1) in the restricted case under the null of a common
root and under the alternative of unrestricted roots.

Estimating (2.1) under the restriction Rn = rnI gives the pooled least squares estimator
r̂n = (
∑n

t=1 X′
tXt−1)(

∑n
t=1 X′

t−1Xt−1)
−1 of the common root rn. We have the following limit

theory for r̂n under the null hypothesis and alternative.

Lemma 3.1.

(i) Under the null Rn = rnI with rn = 1 + c
n , r̂n has the limit distribution

n
(
r̂n − rn

)⇒ (∫ 1

0
Jc(r)′dB

)/(∫ 1

0
Jc(r)′Jc(r)dr

)
, (3.1)

and the residual moment matrix 	̃ = n−1
∑n

t=1 ũtũ′
t →p 	, where ũt = Xt − r̂nXt−1, has

the form

	̃ = 1
n

n∑
t=1

utu′
t + O(n−1)� (3.2)

(ii) Under the alternative hypothesis where Rn = diag(�n, �n), r̂n has the limit distribution

kn�
n
n(r̂n − �n) ⇒ 2b

Y2(b)

X2(b)
, (3.3)

where Y2(b) =d X2(b) ≡ N (0, �22
2b ), and Y2(b) and X2(b) are independent. The

residual moment matrix 	̃ of the restricted regression has the following asymptotic
behavior under the alternative hypothesis:

	̃ = 1
n

n∑
t=1

utu′
t + b2n

k2
n

[
1

n2

∑n
t=1 X2

1t−1 0
0 0

]
�1 + op(1)�� (3.4)

1For example, asymptotic critical values might be computed for the limit distribution (2.13) with 	 = I
and b = a1(

a′
1a1

)1/2 .
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Since 	̆ = n−1
∑n

t=1 utu′
t →p 	, it follows from (3.2) that 	̃ is consistent for 	 under the

null. However, from (3.4) and the fact that n−2
∑n

t=1 X2
1t−1 ⇒ ∫ 1

0 J 2
1c, it is apparent that 	̃

is consistent for 	 when n = o(k2
n) but is inconsistent when k2

n
n = O(1) and, in particular,

when kn = o(n1/2). These results enable us to determine conditions for the consistency of
model selection criteria such as the Schwarz criterion (BIC).

For the model (2.1), the restricted regression and unrestricted regression BIC criteria
are

BICr = log
∣∣∣	̃∣∣∣+ log n

n
, BICu = log

∣∣∣	̂∣∣∣+ 4
log n

n
�

When the null holds and Rn = rnI it is evident that

BICr = log
∣∣∣	̃∣∣∣+ log n

n
= log
∣∣∣	̆∣∣∣+ log n

n
+ Op

(
1
n

)
, (3.5)

whereas for the unrestricted regression

BICu = log
∣∣∣	̂∣∣∣+ 4

log n
n

= log
∣∣∣	̆∣∣∣+ 4

log n
n

+ Op

(
1
n

)
(3.6)

since 	̂ = 	̆ + Op

(
n−1
)

analogous to the proof of (3.2). In view of (3.5) and (3.6), BICr <

BICu up to a term of Op( 1
n ). The restricted model will therefore be correctly chosen with

probability approaching unity under the null.
When the alternative holds, (3.6) continues to apply for the unrestricted regression. But

under the alternative for the restricted regression, we have from (3.4)

log
∣∣∣	̃∣∣∣ = log

∣∣∣∣	̆ + b2n
k2

n

[
n−2
∑n

t=1 X2
1t−1 0

0 0

]
�1 + op(1)�

∣∣∣∣
= log
∣∣∣	̆∣∣∣+ log

∣∣∣∣I + b2n
k2

n

	̆−1

[
n−2
∑n

t=1 X2
1t−1 0

0 0

]
�1 + op(1)�

∣∣∣∣
= log
∣∣∣	̆∣∣∣+ b2n

k2
n

tr
{

	̆−1

[
n−2
∑n

t=1 X2
1t−1 0

0 0

]}
�1 + op(1)�

= log
∣∣	∣∣+ b2n

k2
n

tr
{

	−1

[
n−2
∑n

t=1 X2
1t−1 0

0 0

]}
�1 + op(1)�

= log
∣∣	∣∣+ b2n

k2
n

n−2
∑n

t=1 X2
1t−1

�11�2
�1 + op(1)�,

where �11�2 = �11 − (�12�21)/�22. Then

BICr = log
∣∣∣	̃∣∣∣+ log n

n
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= log
∣∣∣	̆∣∣∣+ b2n

k2
n

n−2
∑n

t=1 X2
1t−1

�11�2
�1 + op(1)� + log n

n
�

It follows that BICr > BICu under the alternative as n → ∞ whenever

b2n
k2

n

n−2
∑n

t=1 X2
1t−1

�11�2
> 3

log n
n

,

which inequality holds with probability approaching unity provided n2

k2
nlogn → ∞ as n →

∞ because n−2
∑n

t=1 X2
1t−1 ⇒ ∫ 1

0 J 2
1c > 0 with probability one. Hence, under the alternative,

the unrestricted model will be chosen with probability approaching unity as n → ∞
provided kn goes to infinity slower than n/(logn)1/2, that is provided kn(logn)1/2

n → 0.
It follows that model selection by BIC is consistent and as n → ∞ the criterion will

successfully distinguish roots in the vicinity of unity provided one of the roots �n = 1 + b
kn

is mildly explosive and sufficiently different from local to unity in the sense that kn → ∞
slower than O( n

Ln
) where Ln is a slowly varying function that diverges at least as fast

as (logn)1/2, i.e., lim infn→∞ Ln
(logn)1/2 > 0. In this respect, the discriminatory capability of

model selection is analogous to that of classical Wald testing.

4. CONCLUSION

Model selection by BIC is well known to be blind to local alternatives in general (see
Ploberger and Phillips, 2003; and Leeb and Poetscher, 2005). For instance, in the current
set up, BIC cannot consistently distinguish between a model with a unit root (�n = 1)

and models with roots local to unity (�n = 1 + c
n ), just as localizing coefficients such

as the parameter c are not consistently estimable. On the other hand, as shown here,
BIC and classical tests can successfully distinguish roots in the immediate locality of
unity like �n from roots that are in the wider vicinity of unity like �n, which opens the
door to distinguishing mildly explosive behavior in data. We expect these model selection
results to be generalizable to models with weakly dependent innovations, analogous to
the findings in Phillips (2008) on unit root discrimination and Cheng and Phillips (2009)
for cointegrating rank determination.

Tests of this type will be useful in empirical work where it is of interest to differentiate
between the behavioral time series character of financial data such as asset prices and
the fundamentals that are believed to determine prices, like dividends and earnings. In
such cases, the primary maintained hypothesis is that the series have roots that are local
to unity (without being specific about the localizing coefficient) and the alternative is
that one or other of the series may be mildly explosive at least over subperiods of data
(see Phillips et al., 2011; Phillips and Yu, 2011). On the other hand, if the primary
maintained hypothesis is that both series may be mildly explosive and the null hypothesis
is commonality in the roots, then problems of bias and inconsistency may arise in testing
and model selection. Recent work by Nielsen (2009) and Phillips and Magdalinos (2013)
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provide a limit theory for least squares regression in the case of purely explosive common
roots and show that least squares regression is inconsistent. That work may be extended
to the case of common mildly explosive roots and will be explored in later work.

5. APPENDIX

5.1. Preliminary Lemmas

We start with some lemmas that assist in the asymptotic development. These results
rely on existing limit theory (e.g., Hall and Heyde, 1980) so we only sketch the main
details here for convenience. We repeatedly use the fact that kn(�

2
n − 1) = 2b + O( 1

kn
) and

�−n
n = exp(−b n

kn
)�1 + o(1)� = o(1). The first result is from PM7a. See also Phillips and

Magdalinos (2008) and Magdalinos and Phillips (2009) for related results on systems with
explosive and mildly explosive processes.

Lemma 5.1 (PM7a). Define

Xn(b) =
[

X1n(b)
X2n(b)

]
:= 1√

kn

n∑
j=1

�−j
n uj ,

Yn(b) =
[

Y1n(b)
Y2n(b)

]
:= 1√

kn

n∑
j=1

�−(n−j)−1
n uj�

Then, as n → ∞, Xn(b) ⇒ X(b) = (X1(b), X2(b))′ ≡ N (0, 1
2b 	), and Yn(b) ⇒ Y (b) =

(Y1(b), Y2(b))′, where Y (b) =d X(b), and X(b) and Y (b) are independent.

Lemma 5.2. Define Sn(r) := 1√
n

∑�nr�
j=1 uj and

Xc
1n(r) = X1�nr�√

n
= 1√

n

�nr�∑
j=1

�j
nu1�nr�−j ,

X2n(b) = X2n√
kn�n

n

= 1√
kn

n∑
j=1

u2j

�
j
n

�

Then, as n → ∞, we have as follows:

(i) Sn(r) =
[

1√
n

∑�nr�
j=1 u1j

1√
n

∑�nr�
j=1 u2j

]
⇒ [ B1(r)

B2(r)

] = B(r) ≡ BM(	);

(ii) Xc
1n(r) ⇒ J1c(r) = ∫ r

0 ec(r−s)dB1(s) and n−1
∑n

j=1 X1t−1ut ⇒ ∫ 1
0 J1c(r)dB(r);

(iii) X2n(b) ⇒ X2(b), where X2(b) ≡ N
(
0, �22

2b

)
;

(iv) J1c(r) and X2(b) are independent;
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(v) For all s, r > 0 the following joint convergence applies:[
X1�nr�√

n
,

X2�ns�√
kn�

�ns�
n

]
⇒ �J1c(r), X2(b)� , as n → ∞�

Proof. Result (i) is standard, (ii) is from Phillips (1987b), and (iii) is from Lemma 5.1.
To prove (iv), it suffices to show that B1(r) and X2(b) are independent, since J1c(r) is a
functional of �B1(s)�s≤r . Note that the covariance

E (S1n(1)X2n(b)) = E

⎡⎣⎛⎝ 1√
n

n∑
j=1

u1j

⎞⎠( 1√
kn

n∑
k=1

u2k

�k
n

)⎤⎦
= �12√

nkn

n∑
k=1

1
�k

n

= �12√
nkn

1
�n

(
1 − �−n

n

1 − �−1
n

)

= �12√
nkn

1
�n − 1

�1 + o(1)� = �12

b

√
kn

n
�1 + o(1)� = o(1),

as n → ∞. Independence of the limit processes J1c(r) and X2(b) follows. To prove (v),
first observe that for any (integer sequence) Ln → ∞ such that Ln

kn
→ ∞, we have X2Ln√

kn�Ln
n

⇒
X2(b). Note that X2n(b) = X2Ln√

kn�Ln
n

+ 1√
kn

∑n
j=Ln+1

u2j

�
j
n

and

E

∣∣∣∣∣∣ 1√
kn

n∑
j=Ln+1

u2j

�
j
n

∣∣∣∣∣∣
2

= 1
kn

n∑
j=Ln+1

�22

�
2j
n

= �22

kn

1

�2Ln+2
n

(
1 − �−2n+2Ln

n

1 − �−2
n

)

= �22

kn

(
�2

n − 1
) (�−2Ln

n − �−2n
n

) = o(1),

since �−2Ln
n =

(
1 + b

kn

)−2Ln =
{(

1 + b
kn

)kn
}−2 Ln

kn = exp(−2b Ln
kn

) + o(1) = o(1). Hence,
X2Ln√
kn�Ln

n
⇒ X2(b) by Lemma 5.1. Now let Ln = �ns� for any s > 0 and then X2�ns�√

kn�
�ns�
n

⇒
X2(b). Joint convergence and (v) follow from marginal convergence and asymptotic
independence of the components.

Lemma 5.3. As n → ∞, we have as follows:

(i) 1
k2

n�2n
n

∑n
t=1 X2

2t−1 ⇒ (X2(b))2

2b ;

(ii) 1
n2

∑n
t=1 X2

1t−1 ⇒ ∫ 1
0 J1c(r)2dr;

(iii) 1
nkn�n

n

∑n
t=1 X1t−1X2t−1 = op(1).
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Proof. (i) follows from PM7a and (ii) is standard (Phillips, 1987a, b). For (iii), it is
convenient to take a probability space where

[
X1�nr�√

n , X2�ns�√
kn�

�ns�
n

]
→p �J1c(r), X2(b)�. Then, for

any sequence Ln → ∞ such that Ln
n → 0, we have

1
nkn�n

n

n∑
t=1

X1t−1X2t−1 = 1√
nkn�n

n

{
Ln∑
t=1

+
n∑

t=Ln+1

}(
X1t−1√

n

)(
X2t−1√
kn�t−1

n

)
�t−1

n

= X2(b)√
nkn�n

n

n∑
t=Ln+1

(
J1c

(
t
n

))
�t−1

n �1 + op(1)�

+ �Ln
n√

nkn�n
n

Ln∑
t=1

(
X1t−1√

n

)(
X2t−1√
kn�t−1

n

)
�t−1

n

�Ln
n

= X2(b)√
nkn�n

n

n∑
t=Ln+1

(
J1c

(
t
n

))
�t−1

n �1 + op(1)� + Op

(
Ln�

Ln
n√

nkn�n
n

)

= X2(b)√
nkn�n

n

n∑
t=1

(
J1c

(
t
n

))
�t−1

n + op(1)�

Now
∑n

t=1(J1c(
t
n ))�t−1

n has zero mean and variance

E

(
n∑

t=1

(
J1c

(
t
n

))
�t−1

n

)2

=
n∑

t=1

n∑
s=1

E
(

J1c

(
t
n

)
J1c

( s
n

))
�t+s−2

n

≤ M
(

�n
n − 1

�n − 1

)2

≤ M ′ k
2
n�

2n
n

b2
,

for some finite constants M and M ′. It follows that

Var

(
1√

nkn�n
n

n∑
t=Ln

(
J1c

(
t
n

))
�t−1

n

)
= O
(

k2
n�

2n
n

nkn�2n
n

)
= O
(

kn

n

)
= o(1),

leading to 1√
nkn�n

n

∑n
t=Ln

(J1c(
t
n ))�t−1

n = op(1), which implies that 1
nkn�n

n

∑n
t=1 X1t−1X2t−1 =

op(1) and this also holds in the original probability space, giving the required result.

Lemma 5.4. As n → ∞, we have as follows:

(i) D−1
n X′

−1X−1D−1
n ⇒
[ ∫ 1

0 J1c(r)2dr 0

0
(X2(b))2

2b

]
;

(ii) u′X−1D−1
n ⇒
[∫ 1

0 J1c(r)dB(r) X2(b)Y (b)
]
.
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Proof. Using Lemma 5.3

D−1
n X′

−1X−1D−1
n = D−1

n

(
n∑

t=1

Xt−1X′
t−1

)
D−1

n

=
[

1
n2

∑n
t=1 X2

1t−1
1

nkn�n
n

∑n
t=1 X1t−1X2t−1

1
nkn�n

n

∑n
t=1 X2t−1X1t−1

1
k2

n�2n
n

∑n
t=1 X2

2t−1

]

⇒
[∫ 1

0 J1c(r)2dr 0
0 (X2(b))2

2b

]
,

giving (i). Result (ii) follows directly from Lemmas 5.2 and 5.3 as

u′X−1D−1
n =
[

1
n

∑n
t=1 X1t−1ut

1
kn�n

n

∑n
t=1 X2t−1ut

]
=
[∑n

t=1

(
X1t−1√

n

) (
ut√

n

)
1√

kn�n
n

∑n
t=1

(
X2t−1√
kn�t−1

n

)
ut�

t−1
n

]
⇒
[∫ 1

0 J1c(r)dB(r) X2(b)Y (b)
]

�

Joint convergence follows from the independence between B(r) and (X2(b), Y (b)).

5.2. Proofs of the Main Results

Proof of Theorem 2.1. Using Lemma 5.4, continuous mapping and joint convergence,
we have

(
R̂n − Rn

)
Dn = (u′X−1D−1

n

) (
D−1

n X′
−1X−1D−1

n

)−1 ⇒
[ ∫ 1

0 J1c(r)dB(r)∫ 1
0 J1c(r)2dr

Y (b)
X2(b)/2b

]
�

Since (�2
n − 1) = 2b

kn
(1 + o(1)), the equivalent result

(
R̂n − Rn

)
Fn ⇒
[ ∫ 1

0 J1c(r)dB(r)∫ 1
0 J1c(r)2dr

Y (b)
X2(b)

]
,

holds as stated.

Proof of Theorem 2.2. We first prove (2.10) and (2.12) for the statistic Wn. Under the
null, we have by standard theory

n
(
R̂n − Rn

)⇒ ∫ 1

0
dBJ ′

c

(∫ 1

0
JcJ ′

c

)−1

=: �, n2
(
X′

−1X−1

)−1 ⇒
∫ 1

0
JcJ ′

c (5.1)
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	̂ = n−1
∑n

t=1 ûtû′
t →p 	, and (2.10) follows directly for Wn and (2.11) for W A

n . Under the
alternative from Theorem 2.1 with correct centering, we have

a′
1vec
{(

R̂n − Rn

)
Fn

} = n
(
r̂11 − r11

)− �n
n(

�2
n − 1
) (r̂22 − r22

)⇒ a′
1vec�,

whereas under (2.2) with b > 0, the null centred linear combination behaves as

a′
1vec
(
nR̂n

) = n(r̂11 − r̂22) = n(r̂11 − r11) − n
(
r̂22 − r22

)+ n(r11 − r22)

= n(r̂11 − r11) − �n
n

(�2
n − 1)

(
r̂22 − r22

) n(�2
n − 1)

�n
n

+
(

c − nb
kn

)
= n(r̂11 − r11) +

(
c − nb

kn

)
+ op(1)

= n(r̂11 − r11) + Op(
n
kn

) → −∞, as n → ∞,

in view of (2.7)–(2.9) and since n(�2
n−1)

�n
n

= n
kn
�n

n
kn(�

2
n − 1) = O(

n
kn

exp(b n
kn

)
) = o(1). Next, setting

dn = (
∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1) − (
∑n

t=1 X1t−1X2t−1)
2 and using Lemma 4.3, we find that

dn =
n∑

t=1

X2
1t−1

n∑
t=1

X2
2t−1

⎧⎪⎨⎪⎩1 −
(

1
nkn�n

n

∑n
t=1 X1t−1X2t−1

)2
1

n2

∑n
t=1 X2

1t−1
1

k2
n�2n

n

∑n
t=1 X2

2t−1

⎫⎪⎬⎪⎭
=

n∑
t=1

X2
1t−1

n∑
t=1

X2
2t−1 �1 − op(1)� , (5.2)

and

dn

n2k2
n�

2n
n

= 1
n2

n∑
t=1

X2
1t−1

1
k2

n�
2n
n

n∑
t=1

X2
2t−1 �1 − op(1)�

⇒
(∫ 1

0
J1c(r)2dr

)(
X(b)2

2b

)
�

It follows that

n2
(
X′

−1X−1

)−1 = n2

dn

[ ∑n
t=1 X2

2t−1 −∑n
t=1 X1t−1X2t−1

−∑n
t=1 X1t−1X2t−1

∑n
t=1 X2

1t−1

]

=
⎡⎣ n2∑n

t=1 X2
1t−1

− n2∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

− n2∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

n2∑n
t=1 X2

2t−1

⎤⎦ �1 + op(1)�
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=
[(∑n

t=1 X2
1t−1

n2

)−1
+ op(1) op(1)

op(1) op(1)

]
⇒
[(∫ 1

0 J1c(r)2dr
)−1

0

0 0

]
� (5.3)

Since 	̂ →p 	, we have

n2a′
1

{
	̂ ⊗ (X′

−1X−1

)−1
}

a1 = a′
1

{(
	 + op(1)

) ⊗ [(∑n
t=1 X2

1t−1
n2

)−1
+ op(1) op(1)

op(1) op(1)

]}
a1

⇒ a′
1

{
	 ⊗
[(∫ 1

0 J1c(r)2dr
)−1

0

0 0

]}
a1

= �11

(∫ 1

0
J1c(r)2dr

)−1

�

It follows that

Wn = (a′
1vec
(
R̂n

))2
/a′

1

{
	̂ ⊗ (X′

−1X−1

)−1
}

a1

=
{

n(r̂11 − r11) + Op( n
kn

)
}2

�11

(∫ 1
0 J1c(r)2dr

)−1 + op(1)

= Op

(
n2

k2
n

)
,

giving the stated result.
The proof of (2.12) for the statistic W A

n under the alternative follows the same lines
but involves more complex calculations to cope with different orders of magnitude in the
components. First, consider the behavior of the centred elements under the alternative.
By (2.7)–(2.9), we have

A′vec
{(

R̂n − Rn

)
Fn

} =
⎡⎢⎣n
(
r̂11 − r11

)− �n
n

(�2
n−1)

(
r̂22 − r22

)
�n

n
(�2

n−1)

(
r̂12 − r12

)
n
(
r̂21 − r21

)
⎤⎥⎦

′

⇒ A′vec��

On the other hand, under (2.2) with b > 0, the null-centred linear combinations behave
as follows. First,

a′
1vec
(
nR̂n

) = n(r̂11 − r̂22) = n(r̂11 − r11) − n
(
r̂22 − r22

)+ n(r11 − r22)

= n(r̂11 − r11) − �n
n

(�2
n − 1)

(
r̂22 − r22

) n(�2
n − 1)

�n
n

+
(

c − nb
kn

)
= n(r̂11 − r11) + Op(

n
kn

) → −∞, as n → ∞,
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as for Wn. Second

a′
2vec
(
nR̂n

) = nr̂12 = �n
n

(�2
n − 1)

r̂12
n(�2

n − 1)

�n
n

= Op

(
n
kn

exp(b n
kn

)

)
= op(1),

and third

a3
′vec
(
nR̂n

) = nr̂21 ⇒ a′
3vec�, as n → ∞�

Also, as in (5.3)

(
X′

−1X−1

)−1 =
⎡⎣ 1∑n

t=1 X2
1t−1

−
∑n

t=1 X1t−1X2t−1∑n
t=1 X2

1t−1

∑n
t=1 X2

2t−1

−
∑n

t=1 X1t−1X2t−1∑n
t=1 X2

1t−1

∑n
t=1 X2

2t−1

1∑n
t=1 X2

2t−1

⎤⎦ �1 + op(1)� �

We now evaluate each of the components of the matrix

A′
{
	̂ ⊗ (X′

−1X−1

)−1
}

A =
⎡⎣a′

1
a′

2
a′

3

⎤⎦[�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
�a1, a2, a3� �

Using Lemma 4.3, we find

a′
1

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a1

=
(

�̂11
1∑n

t=1 X2
1t−1

+ 2�̂12

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

+ �̂22
1∑n

t=1 X2
2t−1

)
�1 + op(1)�

= �̂11
1∑n

t=1 X2
1t−1

�1 + op(1)� ,

a′
1

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a2

= −
(

�̂11

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

+ �̂12
1∑n

t=1 X2
2t−1

)
�1 + op(1)�

= −�̂11

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

�1 + op(1)� ,

a′
2

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a2 = �̂11

1∑n
t=1 X2

2t−1

�1 + op(1)� ,
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a′
3

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a3 = �̂22

1∑n
t=1 X2

1t−1

�1 + op(1)� ,

a′
1

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a3

=
(

�̂12
1∑n

t=1 X2
2t−1

− �̂22

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

)
�1 + op(1)�

= −�̂22

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

�1 + op(1)� ,

a′
2

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a3 = −�̂12

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

�1 + op(1)� ,

and

a′
3

[
�̂11

(
X′

−1X−1

)−1
�̂12

(
X′

−1X−1

)−1

�̂12

(
X′

−1X−1

)−1
�̂22

(
X′

−1X−1

)−1

]
a3 = �̂22

1∑n
t=1 X2

2t−1

�1 + op(1)� �

Hence

A′
{
	̂ ⊗ (X′

−1X−1

)−1
}

A

=

⎡⎢⎢⎣
�̂11

1∑n
t=1 X2

1t−1
−�̂11

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1
−�̂22

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

�̂22
1∑n

t=1 X2
1t−1

−�̂12

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

�̂22
1∑n

t=1 X2
2t−1

⎤⎥⎥⎦ �1 + op(1)� �

Set Kn = diag(n, n, kn�
n
n), and observe that

KnA′
{
	̂ ⊗ (X′

−1X−1

)−1
}

AKn

=

⎡⎢⎢⎣
�̂11

n2∑n
t=1 X2

1t−1
op(1) op(1)

�̂22
n2∑n

t=1 X2
1t−1

op(1)

�̂22
k2

n�2n
n∑n

t=1 X2
2t−1

⎤⎥⎥⎦ �1 + op(1)�

since

n2
∑n

t=1 X1t−1X2t−1∑n
t=1 X2

1t−1

∑n
t=1 X2

2t−1

= op(1),
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nkn�
n
n

∑n
t=1 X1t−1X2t−1∑n

t=1 X2
1t−1

∑n
t=1 X2

2t−1

=
1

nkn�n
n

∑n
t=1 X1t−1X2t−1

1
n2

∑n
t=1 X2

1t−1
1

k2
n�2n

n

∑n
t=1 X2

2t−1

= op(1),

by Lemma 4.3(iii). We deduce that

W A
n = (A′vec

(
R̂n

))′ (
A′
{
	̂ ⊗ (X′

−1X−1

)−1
}

A
)−1 (

A′vec
(

R̂n

))
= (A′vec

(
R̂n

))′
Kn

(
KnA′
{
	̂ ⊗ (X′

−1X−1

)−1
}

AKn

)−1
Kn

(
A′vec
(
R̂n

))

= (A′vec
(
R̂n

))′
Kn

⎡⎢⎢⎣
�11

n2∑n
t=1 X2

1t−1
0 0

0 �22
n2∑n

t=1 X2
1t−1

0

0 �22
k2

n�2n
n∑n

t=1 X2
2t−1

⎤⎥⎥⎦
−1

× Kn

(
A′vec
(
R̂n

))
�1 + op(1)� � (5.4)

Next

A′vec
(
R̂n

)
Kn = A′vec

(
R̂n − Rn

)
Kn + A′vec (Rn) Kn

=
⎡⎣n
(
r̂11 − r11

)− n
(
r̂22 − r22

)
n
(
r̂12 − r12

)
kn�

n
n

(
r̂21 − r21

)
⎤⎦′

+
⎡⎣n (r11 − r22)

0
0

⎤⎦′

=

⎡⎢⎢⎣
n
(
r̂11 − r11

)+ Op

(
n

kn�n
n

)
Op

(
n

kn�n
n

)
kn�

n
n

(
r̂21 − r21

)
⎤⎥⎥⎦

′

+
⎡⎣c − n

kn
b

0
0

⎤⎦′

, (5.5)

from Theorem 2.1 and (2.7)–(2.9). It now follows from (5.4) and (5.5) that

W A
n =
(

− n
kn

b + Op(1), op(1), Op(1)

)⎡⎢⎢⎣
�11

n2∑n
t=1 X2

1t−1
0 0

0 �22
n2∑n

t=1 X2
1t−1

0

0 �22
k2

n�2n
n∑n

t=1 X2
2t−1

⎤⎥⎥⎦
−1

×
⎡⎣− n

kn
b + Op(1)

op(1)
Op(1)

⎤⎦
=
(

− n
kn

b
)2 (∫ 1

0
J1c(r)2dr

)
/�11 �1 + op(1)� ,

giving the stated result.
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Proof of Lemma 3.1. Part (i) follows by standard methods in view of Lemmas 5.2–5.5.

Also ũt = Xt − r̂nXt−1 = ut − (r̂n − rn)Xt−1, and so we have

	̃ = n−1
n∑

t=1

utu′
t + (r̂n − rn

)
n−1

n∑
t=1

(
Xt−1u′

t + utX′
t−1

)+ (r̂n − rn

)2
n−1

n∑
t=1

Xt−1X′
t−1

= n−1
n∑

t=1

utu′
t + Op

(
1
n

)
, (5.6)

as stated. For part (ii) to obtain the limit distribution under the alternative, write r̂n as

r̂n =
(

n∑
t=1

X1tX1t−1 +
n∑

t=1

X2tX2t−1

)(
n∑

t=1

X2
1t−1 +

n∑
t=1

X2
2t−1

)−1

= �n
∑n

t=1 X2
1t−1 + �n

∑n
t=1 X2

2t−1∑n
t=1 X2

1t−1 +∑n
t=1 X2

2t−1

+
∑n

t=1 u1tX1t−1 +∑n
t=1 u2tX2t−1∑n

t=1 X2
1t−1 +∑n

t=1 X2
2t−1

= �n + �n
∑n

t=1 X2
1t−1/
∑n

t=1 X2
2t−1

1 +∑n
t=1 X2

1t−1/
∑n

t=1 X2
2t−1

+
∑n

t=1 u2tX2t−1/
∑n

t=1 X2
2t−1 +∑n

t=1 u1tX1t−1/
∑n

t=1 X2
2t−1

1 +∑n
t=1 X2

1t−1/
∑n

t=1 X2
2t−1

= �n

{
1 + �n

�n

∑n
t=1 X2

1t−1∑n
t=1 X2

2t−1

}{
1 +
∑n

t=1 X2
1t−1∑n

t=1 X2
2t−1

}−1

+
{∑n

t=1 u2tX2t−1 +∑n
t=1 u1tX1t−1∑n

t=1 X2
2t−1

}{
1 +
∑n

t=1 X2
1t−1∑n

t=1 X2
2t−1

}−1

�

Then, using Lemma 5.3

r̂n − �n = (�n − �n)

∑n
t=1 X2

1t−1∑n
t=1 X2

2t−1

�1 + op(1)� +
∑n

t=1 u2tX2t−1 +∑n
t=1 u1tX1t−1∑n

t=1 X2
2t−1

�1 + op(1)�

= 1
kn�n

n

1
kn�n

n

∑n
t=1 u2tX2t−1 + n

kn�n
n

1
n

∑n
t=1 u1tX1t−1

1
k2

n�2n
n

∑n
t=1 X2

2t−1

�1 + op(1)�

+ n2

k2
n�

2n
n

(
c
n

− b
kn

) 1
n2

∑n
t=1 X2

1t−1
1

k2
n�2

n

∑n
t=1 X2

2t−1

�1 + op(1)�

= 1
kn�n

n

1
kn�n

n

∑n
t=1 u2tX2t−1

1
k2

n�2n
n

∑n
t=1 X2

2t−1

�1 + op(1)� ,
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and in view of Lemma 5.1,

kn�
n
n

(
r̂n − �n

)⇒ X2(b)Y2(b)

X2(b)2/2b
= 2b

Y2(b)

X2(b)
,

giving the stated result (3.3). To prove (3.4), first note that

r̂n − �n = (r̂n − �n

)+ (�n − �n) =
(

b
kn

− c
n

)
+ Op

(
1

kn�n
n

)
�

The restricted regression residuals are

ũt = Xt − r̂nXt−1 = ut − (r̂nI − Rn

)
Xt−1 = ut −

[
r̂n − �n 0

0 r̂n − �n

]
Xt−1

= ut − (r̂n − �n

)
Xt−1 +

[
(�n − �n) X1t−1

0

]
= ut + b

kn

[
X1t−1

0

]
�1 + op(1)� �

Let 	̆ = n−1
∑n

t=1 utu′
t and then 	̆ →p 	 and

	̃ = 	̆ + b
knn

n∑
t=1

{[
X1t−1

0

]
u′

t + ut

[
X1t−1 0

]}

+ b2

k2
nn

n∑
t=1

[
X1t−1

0

] [
X1t−1 0

]
= 	̆ + b2n

k2
n

[
n−2
∑n

t=1 X2
1t−1 0

0 0

]
�1 + op(1)� ,

since n−1
∑n

t=1 X1t−1ut = Op(1) by Lemma 5.2(ii) and kn
n → 0.
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