199,678 research outputs found
Geologic information from satellite images
The author has identified the following significant results. Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photointerpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familar shapes and patterns. It is possible to optimize the scale, format, spectral bands, conditions of acquisition, and sensor systems for best geologic interpretation. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration
Critical Conductance and Its Fluctuations at Integer Hall Plateau Transitions
Under periodic boundary condition in the transverse direction, we calculate
the averaged zero-temperature two-terminal conductance ( for ) at the critical point of
integer quantum Hall plateau transitions. We find {\it universal} values for
, and ,
where ; ; ; and
respectively. We also determine the leading finite size
scaling corrections to these observables. Comparisons with experiments will be
made.Comment: 13 pages, 3 Postscript figures included, Final version with minor
corrections, To appear in Physical Review Letter
Dynamical renormalization group approach to the Altarelli-Parisi-Lipatov equations
The Altarelli-Parisi-Lipatov equations for the parton distribution functions
are rederived using the dynamical renormalization group approach to quantum
kinetics. This method systematically treats the ln Q^2 corrections that arises
in perturbation theory as a renormalization of the parton distribution function
and unambiguously indicates that the strong coupling must be allowed to run
with the scale in the evolution kernel. To leading logarithmic accuracy the
evolution equation is Markovian and the logarithmic divergences in the
perturbative expansion are identified with the secular divergences (terms that
grow in time) that emerge in a perturbative treatment of the kinetic equations
in nonequilibrium systems. The resummation of the leading logarithms by the
Altarelli-Parisi-Lipatov equation is thus similar to the resummation of the
leading secular terms by the Boltzmann kinetic equation.Comment: 8 pages, version to appear in Phys. Rev.
Nematic order of model goethite nanorods in a magnetic field
We explore the nematic order of model goethite nanorods in an external
magnetic field within Onsager-Parsons density functional theory. The goethite
rods are represented by monodisperse, charged spherocylinders with a permanent
magnetic moment along the rod main axis, forcing the particles to align
parallel to the magnetic field at low field strength. The intrinsic diamagnetic
susceptibility anisometry of the rods is negative which leads to a preferred
perpendicular orientation at higher field strength. It is shown that these
counteracting effects may give rise to intricate phase behavior, including a
pronounced stability of biaxial nematic order and the presence of reentrant
phase transitions and demixing phenomena. The effect of the applied field on
the nematic-to-smectic transition will also be addressed.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
Conductance Correlations Near Integer Quantum Hall Transitions
In a disordered mesoscopic system, the typical spacing between the peaks and
the valleys of the conductance as a function of Fermi energy is called
the conductance energy correlation range . Under the ergodic hypothesis,
the latter is determined by the half-width of the ensemble averaged conductance
correlation function: . In
ordinary diffusive metals, , where is the diffusion constant
and is the linear dimension of the phase-coherent sample. However, near a
quantum phase transition driven by the location of the Fermi energy , the
above picture breaks down. As an example of the latter, we study, for the first
time, the conductance correlations near the integer quantum Hall transitions of
which is a critical coupling constant. We point out that the behavior of
is determined by the interplay between the static and the dynamic
properties of the critical phenomena.Comment: 4 pages, 4 figures, minor corrections, to appear in Phys. Rev. Let
Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace
We present a detailed study of the dynamic response of a ring of equally
spaced Josephson junctions to a time-periodic external flux, including
screening current effects. The dynamics are described by the resistively
shunted Josephson junction model, appropriate for proximity effect junctions,
and we include Faraday's law for the flux. We find that the time-averaged
characteristics show novel {\em subharmonic giant Shapiro voltage resonances},
which strongly depend on having phase slips or not, on , on the inductance
and on the external drive frequency. We include an estimate of the possible
experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques
Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media
The growing popularity of social media (e.g, Twitter) allows users to easily
share information with each other and influence others by expressing their own
sentiments on various subjects. In this work, we propose an unsupervised
\emph{tri-clustering} framework, which analyzes both user-level and tweet-level
sentiments through co-clustering of a tripartite graph. A compelling feature of
the proposed framework is that the quality of sentiment clustering of tweets,
users, and features can be mutually improved by joint clustering. We further
investigate the evolution of user-level sentiments and latent feature vectors
in an online framework and devise an efficient online algorithm to sequentially
update the clustering of tweets, users and features with newly arrived data.
The online framework not only provides better quality of both dynamic
user-level and tweet-level sentiment analysis, but also improves the
computational and storage efficiency. We verified the effectiveness and
efficiency of the proposed approaches on the November 2012 California ballot
Twitter data.Comment: A short version is in Proceeding of the 2014 ACM SIGMOD International
Conference on Management of dat
Superfluidity and excitations at unitarity
We present lattice results for spin-1/2 fermions at unitarity, where the
effective range of the interaction is zero and the scattering length is
infinite. We measure the spatial coherence of difermion pairs for a system of
6, 10, 14, 18, 22, 26 particles with equal numbers of up and down spins in a
periodic cube. Using Euclidean time projection, we analyze ground state
properties and transient behavior due to low-energy excitations. At
asymptotically large values of t we see long-range order consistent with
spontaneously broken U(1) fermion-number symmetry and a superfluid ground
state. At intermediate times we see exponential decay in the t-dependent signal
due to an unknown low-energy excitation. We probe this low-energy excitation
further by calculating two-particle correlation functions. We find that the
excitation has the properties of a chain of particles extending across the
periodic lattice.Comment: 40 pages, 19 figures, revised version includes new data on
two-particle density correlation
How dsDNA breathing enhances its flexibility and instability on short length scales
We study the unexpected high flexibility of short dsDNA which recently has
been reported by a number of experiments. Via the Langevin dynamics simulation
of our Breathing DNA model, first we observe the formation of bubbles within
the duplex and also forks at the ends, with the size distributions independent
of the contour length. We find that these local denaturations at a
physiological temperature, despite their rare and transient presence, can lower
the persistence length drastically for a short DNA segment in agreement with
experiment
Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data
The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin
- …