21 research outputs found

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants

    Get PDF
    IntroductionThe emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. MethodsUsing phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. ResultsOur comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. ConclusionThese findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants

    MicroRNAs, Genomic Instability and Cancer

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA transcripts approximately 20 nucleotides in length that regulate expression of protein-coding genes via complementary binding mechanisms. The last decade has seen an exponential increase of publications on miRNAs, ranging from every aspect of basic cancer biology to diagnostic and therapeutic explorations. In this review, we summarize findings of miRNA involvement in genomic instability, an interesting but largely neglected topic to date. We discuss the potential mechanisms by which miRNAs induce genomic instability, considered to be one of the most important driving forces of cancer initiation and progression, though its precise mechanisms remain elusive. We classify genomic instability mechanisms into defects in cell cycle regulation, DNA damage response, and mitotic separation, and review the findings demonstrating the participation of specific miRNAs in such mechanisms

    Radical-Scavenging Activatable and Robust Polymeric Binder Based on Poly(acrylic acid) Cross-Linked with Tannic Acid for Silicon Anode of Lithium Storage System

    No full text
    The design of a novel binder is required for high-capacity silicon anodes, which typically undergo significant changes during charge/discharge cycling. Hence, in this study, a stable network structure was formed by combining tannic acid (TAc), which can be cross-linked, and poly(acrylic acid)(PAA) as an effective binder for a silicon (Si) anode. TAc is a phenolic compound and representative substance with antioxidant properties. Owing to the antioxidant ability of the C-PAA/TAc binder, side reactions during the cycling were suppressed during the formation of an appropriate solid–electrolyte interface layer. The results showed that the expansion of a silicon anode was suppressed compared with that of a conventional PAA binder. This study demonstrates that cross-linking and antioxidant capability facilitate binding and provides insights into the behavior of binders for silicon anodes. The Si anode with the C-PAA/TAc binder exhibited significantly improved cycle stability and higher Coulombic efficiency in comparison to the Si anode with well-established PAA binders. The C-PAA/TAc binder demonstrated a capacity of 1833 mA h g−1Si for 100 cycles, which is higher than that of electrodes fabricated using the conventional PAA binder. Therefore, the C-PAA/TAc binder offers better electrochemical performance

    Ion-Conducting Robust Cross-Linked Organic/Inorganic Polymer Composite as Effective Binder for Electrode of Electrochemical Capacitor

    No full text
    Poly(ionic liquid)s (PILs) are used in many electrochemical energy storage/conversion devices owing to their favorable physical properties. Therefore, PIL binders have been examined as polymeric binders for electrodes in energy storage systems (ESSs) and have shown superior performance. Several innovative technologies have been developed to improve the properties of polymers, with cross-linking being the most effective and easy strategy to achieve this. In this study, we designed a breakthrough complex cross-linking and composite technique that could successfully develop the physical properties of a polymer in a simple one-step process. Additionally, the technique could improve the thermal stability and mechanical properties of the polymer. The proposed polymeric binder showed better adhesion, higher capacitance, and good energy density with improved cyclic stability compared to that shown by conventional polyvinylidene fluoride (PVDF). This study revealed that cross-linked networks in polymeric binders are long-cycle-life features for electrochemical redox capacitors

    Assessment of Fatigue Lifetime and Characterization of Fatigue Crack Behavior of Aluminium Scroll Compressor Using C-Specimen

    No full text
    Currently, a scroll compressor is used in many industrial fields; hence, research on its reliability is important. The major loading type during operation is pressure. However, unexpected contact between scroll compressors typically occurs, and thus, the severe loading condition should be considered. To consider this condition, the study modified the scroll compressor’s structure to a C-type specimen. The study applied cyclic axial load in the specimen. The main objective of the study is to define a proper fatigue life method for the aluminium scroll compressor and proper finite element method (FEM) modeling. To define the method, the study included a case study for various parameters, such as mean stress effects. Furthermore, a crack propagation study is presented. In the study, the Darveaux method that considers the Bauschinger effect of ductile material is used. It is expected that the consideration of the parameters can help define the fatigue life assessment of an aluminium scroll compressor

    In situ tailor-made additives for molecular crystals : a simple route to morphological crystal engineering

    No full text
    We report on a new morphological crystal engineering technique introducing in situ tailor-made additives for organic molecular crystals. In the crystal growing process, phenolic substrate molecules are transformed to in situ tailor-made phenolate additives by adding a small amount of base, without any additional synthetic and purification processes. To demonstrate the in situ tailor-made additive technique, phenolic OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) crystal, exhibiting highly efficient nonlinear optical and terahertz generation responses, is chosen as substrate crystal. The in situ tailor-made additive molecules containing a phenolate group exhibit considerably different stereoselective interactions with specific crystal surfaces of phenolic substrate OH1 crystals compared to analogous conventional tailor-made additives. The stereospecific interactions result in a morphological change of the grown OH1 crystal more optimal for photonic applications. To show the usefulness of the in situ tailor-made additive technique for applications as well as for fundamental research, newly created parallel surfaces in rectangular rod-shaped OH1 crystals grown in the presence of tailor-made additive are used to demonstrate the THz wave generation by optical rectification, in which one single OH1 crystal can be used in two different optical configurations. Therefore, the in situ tailor-made additive technique is very useful for morphological crystal engineering in fundamental research and various practical applications

    3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks

    No full text
    Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic, has caused a serious economic crisis due to the social disconnection and physical distancing in human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model needs to be established expeditiously for the identification of appropriate therapeutic agents. Such models can be of great help in validating the pathological behavior of pathogens and therapeutic agents. Recently, in vitro models representing human organs and tissues and biological functions have been developed based on high-precision 3D bioprinting. In this paper, we delineate an in-depth assessment of the recently developed 3D bioprinting technology and bioinks. In particular, we discuss the latest achievements and future aspects of the use of 3D bioprinting for in vitro modeling

    Cu2O(100) surface as an active site for catalytic furfural hydrogenation

    No full text
    In order to investigate the major active site of Cu-based catalysts in furfural (FAL) hydrogenation, theoretical calculations were combined with empirical analyses. The adsorption of FAL and H-2 on the Cu(111), CuO(100), and Cu2O(100) surfaces was compared based on density functional theory (DFT) calculations. The migration barrier of the dissociatively adsorbed H atoms on different surfaces was also calculated. It is demonstrated that the Cu2O(100) surface has the largest FAL adsorption energy of 1.63 eV and an appropriate Cu-Cu distance for adsorption and preferential dissociation of the H-2 molecule. To correlate the DFT results with catalytic ex-periments, mesoporous copper oxides (m-CuO) were prepared under controlled reduction conditions. The overall activity of the m-CuO catalysts is determined by the concentration of exposed Cu+. The combined results from DFT calculations and experiments show that Cu2O is a major active species promoting the high activity of FAL hydrogenation
    corecore