15 research outputs found

    An online secretary framework for fog network formation with minimal latency

    No full text
    Abstract Fog computing is seen as a promising approach to perform distributed, low-latency computation for supporting Internet of Things applications. However, due to the unpredictable arrival of available neighboring fog nodes, the dynamic formation of a fog network can be challenging. In essence, a given fog node must smartly select the set of neighboring fog nodes that can provide low-latency computations. In this paper, this problem of fog network formation and task distribution is studied considering a hybrid cloud-fog architecture. The goal of the proposed framework is to minimize the maximum computational latency by enabling a given fog node to form a suitable fog network, under uncertainty on the arrival process of neighboring fog nodes. To solve this problem, a novel approach based on the online secretary framework is proposed. To find the desired set of neighboring fog nodes, an online algorithm is developed to enable a task initiating fog node to decide on which other nodes can be used as part of its fog network, to offload computational tasks, without knowing any prior information on the future arrivals of those other nodes. Simulation results show that the proposed online algorithm can successfully select an optimal set of neighboring fog nodes while achieving a latency that is as small as the one resulting from an ideal, offline scheme that has complete knowledge of the system. The results also show how, using the proposed approach, the computational tasks can be properly distributed between the fog network and a remote cloud server

    An online optimization framework for distributed fog network formation with minimal latency

    No full text
    Abstract Fog computing is emerging as a promising paradigm to perform distributed, low-latency computation by jointly exploiting the radio and computing resources of end-user devices and cloud servers. However, the dynamic and distributed formation of local fog networks is highly challenging due to the unpredictable arrival and departure of neighboring fog nodes. Therefore, a given fog node must properly select a set of neighboring nodes and intelligently offload its computational tasks to this set of neighboring fog nodes and the cloud in order to achieve low-latency transmission and computation. In this paper, the problem of fog network formation and task distribution is jointly investigated while considering a hybrid fog-cloud architecture. The overarching goal is to minimize the maximum communication and computation latency by enabling a given fog node to form a suitable fog network and optimize the task distribution under uncertainty on the arrival process of neighboring fog nodes. To solve this problem, a novel online optimization framework is proposed, in which the neighboring nodes are selected by using a threshold-based online algorithm that uses a target competitive ratio, defined as the ratio between the latency of the online algorithm and the offline optimal latency. The proposed framework repeatedly updates its target competitive ratio and optimizes the distribution of the fog node’s computational tasks in order to minimize latency. The simulation results show that, for specific settings, the proposed framework can successfully select a set of neighboring nodes while reducing latency by up to 19.25% compared with a baseline approach based on the well-known online secretary framework. The results also show how, using the proposed framework, the computational tasks can be properly offloaded between the fog network and a remote cloud server in different network settings

    Online optimization for UAV-assisted distributed fog computing in smart factories of industry 4.0

    No full text
    Abstract In this paper, the problem of unmanned aerial vehicle (UAV)-assisted fog computing in Industry 4.0 smart factories is studied. In particular, a novel online framework is proposed to enable a source UAV to offload computing tasks from ground sensors within a smart factory and allocate them to neighboring fog UAVs for distributed task computing, before the source UAV arrives at its destination. The online nature of the framework allows the UAVs to optimize their task allocation and decide on which neighbors to use for fog computing, even when the tasks are revealed to the source UAV in an online manner, and the information on future task arrivals is unknown. The proposed framework essentially maximizes the number of computed tasks by jointly considering the communication and computation latency. To solve the problem, an online greedy algorithm is designed and solved by using the primal-dual approach. Since the primal problem provides an upper bound of the original dual problem, the competitive ratio can be analytically derived as a function of the task sizes and the data rates of the UAVs. Simulation results show that the proposed online algorithm can achieve a near- optimal task allocation with an optimality gap that is no higher than 7.5% compared to the offline, optimal solution with complete knowledge of all tasks

    Online optimization for low-latency computational caching in Fog networks

    No full text
    Abstract Enabling effective computation for emerging applications such as augmented reality or virtual reality via fog computing requires processing data with low latency. In this paper, a novel computational caching framework is proposed to minimize fog latency by storing and reusing intermediate computation results (IRs). Using this proposed paradigm, a fog node can store IRs from previous computations and can also download IRs from neighboring nodes at the expense of additional transmission latency. However, due to the unpredictable arrival of the future computational operations and the limited memory size of the fog node, it is challenging to properly maintain the set of stored IRs. Thus, under uncertainty of future computation, the goal of the proposed framework is to minimize the sum of the transmission and computational latency by selecting the IRs to be downloaded and stored. To solve the problem, an online computational caching algorithm is developed to enable the fog node to schedule, download, and manage IRs compute arriving operations. Competitive analysis is used to derive the upper bound of the competitive ratio for the online algorithm. Simulation results show that the total latency can be reduced up to 26.8% by leveraging the computational caching method when compared to the case without computational caching

    Sum rate and reliability analysis for power-domain nonorthogonal multiple access (PD-NOMA)

    No full text
    Abstract Nonorthogonal multiple access (NOMA) is seen as an important technology for tomorrow’s Internet-of-Things (IoT) systems. In uplink power-domain NOMA (PD-NOMA), allocating the uplink transmit power of the IoT devices is important to maximize both the sum rate and the reliability of devices. However, it is challenging to optimize the uplink transmit power when the received signal power is affected by a random fading channel. Hence, in this article, the problem of uplink transmit power assignment is studied for a wireless network with PD-NOMA that serves uplink IoT services. This is posed as a problem of determining the target received signal power at the base station (BS) so that the reliability and upper bound of sum rate of the users are jointly maximized, where the received signal power at the BS is unknown to the devices due to Nakagami- mm fading channel. To find an optimal allocation of the lower and higher target received power values for the devices using PD-NOMA, the reliability and upper bound of sum rate are derived in terms of target received power values and power difference threshold. For a special case of Nakagami- mm fading channel, the theoretical analysis shows that the highest reliability and the highest upper bound of sum rate are achieved, when the target received power values are highest. For a general Nakagami- mm fading channel, simulation results show that there is a tradeoff between reliability and sum-rate upper bound and, thus, allocation of lower and higher target received power values is necessary to satisfy the communication requirements of IoT devices. Moreover, for a special case of Nakagami- mm fading channel, simulation results show that the derived optimal transmit power achieves the optimal sum-rate upper bound and reliability, and the target received power values of two devices must be highest for the maximum upper bound of sum rate and reliability. Furthermore, in simulation results, increasing the lower and higher target received power values increases both the upper bound of sum rate and reliability

    Performance analysis of blockchain systems with wireless mobile miners

    No full text
    Abstract In this letter, a novel framework that uses wireless mobile miners (MMs) for computation purposes in a blockchain system is proposed. To operate blockchains over such a wireless mobile network with minimum forking events, it is imperative to maintain low-latency wireless communications between MMs and communication nodes (CNs) that store the blockchain ledgers. To analyze the sensitivity of the system to latency, the probability of occurrence of a forking event is theoretically derived. Also, in mobile blockchain using MMs, minimizing energy consumption required for networking and computation is essential to extend the operation time of MMs. Hence, the average energy consumption of an MM is derived as a function of the system parameters such as the number of MMs and power consumed by the computing, transmission, and mobility processes of the MMs. Simulation results verify the analytical derivations and show that using a larger number of MMs can reduce the energy consumption by up to 95% compared to a blockchain system with a single MM

    An online framework for ephemeral edge computing in the Internet of Things

    No full text
    Abstract In the Internet of Things (IoT) environment, edge computing can be initiated at anytime and anywhere. However, in an IoT environment, edge computing sessions are often ephemeral, i.e., they last for a short period of time and can often be discontinued once the current application usage is completed or the edge devices leave the system due to factors such as mobility. Therefore, in this paper, the problem of ephemeral edge computing in an IoT is studied by considering scenarios in which edge computing operates within a limited time period. To this end, a novel online framework is proposed in which a source edge node offloads its computing tasks from sensors within an area to neighboring edge nodes for distributed task computing, within the limited period of time of an ephemeral edge computing system. The online nature of the framework allows the edge nodes to optimize their task allocation and decide on which neighbors to use for task processing, even when the tasks are revealed to the source edge node in an online manner, and the information on future task arrivals is unknown. The proposed framework essentially maximizes the number of computed tasks by jointly considering the communication and computation latency. To solve the joint optimization, an online greedy algorithm is proposed and solved by using the primal-dual approach. Since the primal problem provides an upper bound of the original dual problem, the competitive ratio of the online approach is analytically derived as a function of the task sizes and the data rates of the edge nodes. Simulation results show that the proposed online algorithm can achieve a near-optimal task allocation with an optimality gap that is no higher than 7.1% compared to the offline, optimal solution with complete knowledge of all tasks

    Online channel allocation for full-duplex device-to-device communications

    No full text
    Abstract Full-duplex device-to-device (D2D) communications over cellular networks is a promising solution for maximizing wireless spectral efficiency. However, in practice, due to the unpredictable arrival of D2D users, the base station (BS) must smartly allocate suitable channels to arriving D2D pairs. In this paper, the problem of dynamic channel allocation is studied for full-duplex D2D networks. In particular, the goal of the proposed approach is to maximize the system sum-rate under complete uncertainty on the arrival process of D2D users. To solve this problem, a novel approach based on an online weighted bipartite matching is proposed. To find the desired solution of the channel allocation problem, a greedy online algorithm is developed to enable the BS to decide on the channel assignment for each D2D pair, without knowing any prior information on future D2D arrivals. For an illustrative case study, upper and lower bounds on the competitive ratio that compares the performance of the proposed online algorithm to that of an offline algorithm are derived. Simulation results show that the proposed online algorithm can achieve a near- optimal sum-rate with an optimality gap that is no higher than 8.3% compared to the offline, optimal solution that has complete knowledge of the system

    Online ski rental for ON/OFF scheduling of energy harvesting base stations

    No full text
    Abstract The co-existence of small cell base stations (SBSs) with conventional macrocell base station is a promising approach to boost the capacity and coverage of cellular networks. However, densifying the network with a viral deployment of SBSs can significantly increase energy consumption. To reduce the reliance on unsustainable energy sources, one can adopt self-powered SBSs that rely solely on energy harvesting. Due to the uncertainty of energy arrival and the finite capacity of energy storage systems, self-powered SBSs must smartly optimize their ON and OFF schedule. In this paper, the problem of ON/OFF scheduling of self-powered SBSs is studied, in the presence of energy harvesting uncertainty with the goal of minimizing the operational costs consisting of energy consumption and transmission delay of a network. For the original problem, we show that an algorithm can solve the problem in the illustrative case. Then, to reduce the complexity of the original problem, an approximation is proposed. To solve the approximated problem, a novel approach based on the ski rental framework, a powerful online optimization tool, is proposed. Using this approach, each SBS can effectively decide on its ON/OFF schedule autonomously, without any prior information on future energy arrivals. By using competitive analysis, a deterministic online algorithm and a randomized online algorithm (ROA) are developed. The ROA is then shown to achieve the optimal competitive ratio in the approximation problem. Simulation results show that, compared with a baseline approach, the ROA can yield performance gains reaching up to 15.6% in terms of reduced total energy consumption of SBSs and up to 20.6% in terms of per-SBS network delay reduction. The results also shed light on the fundamental aspects that impact the ON time of SBSs while demonstrating that the proposed ROA can reduce up to 69.9% the total cost compared with a baseline approach
    corecore