6,255 research outputs found

    Insurance

    Get PDF
    This article focuses on recent legislative changes and judicial interpretations in the area of automobile insurance. Amendments to the Financial Responsibility Laws of Florida have, inter alia, lowered the requisite amount of insurance coverage, shifted the primary insurance burden from the automobile lessor to the lessee\u27s insurer, and disallowed joinder of the liability carrier as a party to the litigation. Florida\u27s no-fault statute has undergone its most severe changes to date. The authors note that the amendments are intended to limit victims\u27 rights to recover damages from tortfeasors, the size of awards that victims may recover, and the number of fraudulent claims. Uninsured motorist coverage has been limited by the elimination of stacking, but broadened by including underinsured motorists within its provisions. Attention is also given to developments in medical malpractice insurance and the new statutory mandate for readable insurance policies

    Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude

    Full text link
    We study the scaling behavior in the tunneling amplitude when quasiparticles tunnel along a straight path between the two edges of a fractional quantum Hall annulus. Such scaling behavior originates from the propagation and tunneling of charged quasielectrons and quasiholes in an effective field analysis. In the limit when the annulus deforms continuously into a quasi-one-dimensional ring, we conjecture the exact functional form of the tunneling amplitude for several cases, which reproduces the numerical results in finite systems exactly. The results for Abelian quasiparticle tunneling is consistent with the scaling anaysis; this allows for the extraction of the conformal dimensions of the quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian quasiparticles in the Read-Rezayi Z_k-parafermion states. Interestingly, the non-Abelian quasiparticle tunneling amplitudes exhibit nontrivial k-dependent corrections to the scaling exponent.Comment: 16 pages, 4 figure

    Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices

    Full text link
    A new iterative method is developed to numerically calculate the periodic, matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV) equations describing the transverse evolution of a beam in a periodic, linear focusing lattice of arbitrary complexity. Implementation of the method is straightforward. It is highly convergent and can be applied to all usual parameterizations of the matched envelope solutions. The method is applicable to all classes of linear focusing lattices without skew couplings, and also applies to all physically achievable system parameters -- including where the matched beam envelope is strongly unstable. Example applications are presented for periodic solenoidal and quadrupole focusing lattices. Convergence properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide

    Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy

    Full text link
    In this paper we present a simple and robust method for self-correction of camera distortion using single images of scenes which contain straight lines. Since the most common distortion can be modelled as radial distortion, we illustrate the method using the Harris radial distortion model, but the method is applicable to any distortion model. The method is based on transforming the edgels of the distorted image to a 1-D angular Hough space, and optimizing the distortion correction parameters which minimize the entropy of the corresponding normalized histogram. Properly corrected imagery will have fewer curved lines, and therefore less spread in Hough space. Since the method does not rely on any image structure beyond the existence of edgels sharing some common orientations and does not use edge fitting, it is applicable to a wide variety of image types. For instance, it can be applied equally well to images of texture with weak but dominant orientations, or images with strong vanishing points. Finally, the method is performed on both synthetic and real data revealing that it is particularly robust to noise.Comment: 9 pages, 5 figures Corrected errors in equation 1

    Correspondence

    Get PDF

    Imaging correlates of molecular signatures in oligodendrogliomas.

    Get PDF
    Molecular subsets of oligodendroglioma behave in biologically distinct ways. Their locations in the brain, rates of growth, and responses to therapy differ with their genotypes. Retrospectively, we inquired whether allelic loss of chromosomal arms 1p and 19q, an early molecular event and favorable prognostic marker in oligodendrogliomas, were reflected in their appearance on magnetic resonance imaging. Loss of 1p and 19q was associated with an indistinct border on T(1) images and mixed intensity signal on T(1) and T(2). Loss of 1p and 19q was also associated with paramagnetic susceptibility effect and with calcification, a common histopathological finding in oligodendrogliomas. These data encourage prospective evaluation of molecular alterations and magnetic resonance imaging characteristics of glial neoplasms

    Randomized trial of conventional transseptal needle versus radiofrequency energy needle puncture for left atrial access (the TRAVERSE-LA study).

    Get PDF
    BackgroundTransseptal puncture is a critical step in achieving left atrial (LA) access for a variety of cardiac procedures. Although the mechanical Brockenbrough needle has historically been used for this procedure, a needle employing radiofrequency (RF) energy has more recently been approved for clinical use. We sought to investigate the comparative effectiveness of an RF versus conventional needle for transseptal LA access.Methods and resultsIn this prospective, single-blinded, controlled trial, 72 patients were randomized in a 1:1 fashion to an RF versus conventional (BRK-1) transseptal needle. In an intention-to-treat analysis, the primary outcome was time required for transseptal LA access. Secondary outcomes included failure of the assigned needle, visible plastic dilator shavings from needle introduction, and any procedural complication. The median transseptal puncture time was 68% shorter using the RF needle compared with the conventional needle (2.3 minutes [interquartile range {IQR}, 1.7 to 3.8 minutes] versus 7.3 minutes [IQR, 2.7 to 14.1 minutes], P = 0.005). Failure to achieve transseptal LA access with the assigned needle was less common using the RF versus conventional needle (0/36 [0%] versus 10/36 [27.8%], P < 0.001). Plastic shavings were grossly visible after needle advancement through the dilator and sheath in 0 (0%) RF needle cases and 12 (33.3%) conventional needle cases (P < 0.001). There were no differences in procedural complications (1/36 [2.8%] versus 1/36 [2.8%]).ConclusionsUse of an RF needle resulted in shorter time to transseptal LA access, less failure in achieving transseptal LA access, and fewer visible plastic shavings
    • …
    corecore