22 research outputs found

    Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis

    Full text link
    Anomaly detection in database management systems (DBMSs) is difficult because of increasing number of statistics (stat) and event metrics in big data system. In this paper, I propose an automatic DBMS diagnosis system that detects anomaly periods with abnormal DB stat metrics and finds causal events in the periods. Reconstruction error from deep autoencoder and statistical process control approach are applied to detect time period with anomalies. Related events are found using time series similarity measures between events and abnormal stat metrics. After training deep autoencoder with DBMS metric data, efficacy of anomaly detection is investigated from other DBMSs containing anomalies. Experiment results show effectiveness of proposed model, especially, batch temporal normalization layer. Proposed model is used for publishing automatic DBMS diagnosis reports in order to determine DBMS configuration and SQL tuning.Comment: 8 page

    Towards End-to-End Generative Modeling of Long Videos with Memory-Efficient Bidirectional Transformers

    Full text link
    Autoregressive transformers have shown remarkable success in video generation. However, the transformers are prohibited from directly learning the long-term dependency in videos due to the quadratic complexity of self-attention, and inherently suffering from slow inference time and error propagation due to the autoregressive process. In this paper, we propose Memory-efficient Bidirectional Transformer (MeBT) for end-to-end learning of long-term dependency in videos and fast inference. Based on recent advances in bidirectional transformers, our method learns to decode the entire spatio-temporal volume of a video in parallel from partially observed patches. The proposed transformer achieves a linear time complexity in both encoding and decoding, by projecting observable context tokens into a fixed number of latent tokens and conditioning them to decode the masked tokens through the cross-attention. Empowered by linear complexity and bidirectional modeling, our method demonstrates significant improvement over the autoregressive Transformers for generating moderately long videos in both quality and speed. Videos and code are available at https://sites.google.com/view/mebt-cvpr2023

    Variational Distribution Learning for Unsupervised Text-to-Image Generation

    Full text link
    We propose a text-to-image generation algorithm based on deep neural networks when text captions for images are unavailable during training. In this work, instead of simply generating pseudo-ground-truth sentences of training images using existing image captioning methods, we employ a pretrained CLIP model, which is capable of properly aligning embeddings of images and corresponding texts in a joint space and, consequently, works well on zero-shot recognition tasks. We optimize a text-to-image generation model by maximizing the data log-likelihood conditioned on pairs of image-text CLIP embeddings. To better align data in the two domains, we employ a principled way based on a variational inference, which efficiently estimates an approximate posterior of the hidden text embedding given an image and its CLIP feature. Experimental results validate that the proposed framework outperforms existing approaches by large margins under unsupervised and semi-supervised text-to-image generation settings.Comment: Accepted at CVPR202

    Autoencoder와 통계적 공정 관리를 활용한 DBMS 이상 탐지

    No full text
    2

    Anomaly Detection in Visual Question Answering

    No full text
    1

    Forecasting Taxi Demands with Fully Convolutional Networks and Temporal Guided Embedding

    No full text
    Learning complex spatiotemporal patterns is a key to predict future taxi demand volumes. We propose temporal guided networks (TGNet), which is an efficient model architecture with fully convolutional networks and temporal guided em- bedding, to capture spatiotemporal patterns. Existing approaches use complex architectures, historical demands (day/week/month ago) to capture the recurring patterns, and external data sources such as meteorological, traffic flow, or tex- ture data. However, TGNet only uses fully convolutional networks and temporal guided embedding without those external data sources. In this study, only pick-up and drop-off volumes of NYC-taxi dataset are used to utilize the full potential of the hidden patterns in the historical data points. We show that TGNet provides notable performance gains on a real-world benchmark, NYC-taxi dataset, over previous state-of-the-art models. Finally we explain how to extend our architecture to incorporate external data sources.1
    corecore