12,919 research outputs found

    Pion Decay Constant, ZAZ_A and Chiral Log from Overlap Fermions

    Get PDF
    We report our calculation of the pion decay constant fπf_\pi, the axial renormalization constant ZAZ_A, and the quenched chiral logarithms from the overlap fermions. The calculation is done on a quenched 20420^4 lattice at a=0.148a=0.148 fm using tree level tadpole improved gauge action. The smallest pion mass we reach is about 280 MeV. The lattice size is about 4 times the Compton wavelength of the lowest mass pion.Comment: Lattice2001(Hadronic Matrix Elements), 3pages, 5figure

    Chiral Properties of Pseudoscalar Mesons on a Quenched 20420^4 Lattice with Overlap Fermions

    Get PDF
    The chiral properties of the pseudoscalar mesons are studied numerically on a quenched 20420^4 lattice with the overlap fermion. We elucidate the role of the zero modes in the meson propagators, particularly that of the pseudoscalar meson. The non-perturbative renormalization constant ZAZ_A is determined from the axial Ward identity and is found to be almost independent of the quark mass for the range of quark masses we study; this implies that the O(a2)O(a^2) error is small. The pion decay constant, fπf_{\pi}, is calculated from which we determine the lattice spacing to be 0.148 fm. We look for quenched chiral log in the pseudoscalar decay constants and the pseudoscalar masses and we find clear evidence for its presence. The chiral log parameter ÎŽ\delta is determined to be in the range 0.15 -- 0.4 which is consistent with that predicted from quenched chiral perturbation theory.Comment: Version accepted for publication by PRD. A few minor typographical errors have been corrected. 24 pages, 11 figure

    Topological Charge Fluctuations and Low-Lying Dirac Eigenmodes

    Get PDF
    We discuss the utility of low-lying Dirac eigenmodes for studying the nature of topological charge fluctuations in QCD. The implications of previous results using the local chirality histogram method are discussed, and the new results using the overlap Dirac operator in Wilson gauge backgrounds at lattice spacings ranging from a~0.04 fm to a~0.12 fm are reported. While the degree of local chirality does not change appreciably closer to the continuum limit, we find that the size and density of local structures responsible for chiral peaking do change significantly. The resulting values are in disagreement with the assumptions of the Instanton Liquid Model. We conclude that the fluctuations of topological charge in the QCD vacuum are not locally quantized.Comment: 3 pages, 4 figures, Lattice2001(confinement

    Glueball Matrix Elements on Anisotropic Lattices

    Full text link
    The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing in the range 0.1fm -- 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/ψJ/\psi radiative decays which will help to identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check, and the finite volume effects are also studied. The lattice spacing dependence of our results is very small and the continuum limits are reliably extrapolated.Comment: 3 pages, 3 figures, Lattice2003 (spectrum

    Uncovering Low-Dimensional Topological Structure in the QCD Vacuum

    Full text link
    Recently, we have pointed out that sign-coherent 4-dimensional structures can not dominate topological charge fluctuations in QCD vacuum at all scales. Here we show that an enhanced lower-dimensional coherence is possible. In pure SU(3) lattice gauge theory we find that in a typical equilibrium configuration about 80% of space-time points are covered by two oppositely-charged connected structures built of elementary 3-dimensional coherent hypercubes. The hypercubes within the structure are connected through 2-dimensional common faces. We suggest that this coherence is a manifestation of a low-dimensional order present in the QCD vacuum. The use of a topological charge density associated with Ginsparg-Wilson fermions ("chiral smoothing") is crucial for observing this structure.Comment: 3 pages, 1 figure; Proceedings of the "Confinement V" Conference, Gargnano, Italy, Sep 10-14, 200

    Roper Resonance and S_{11}(1535) from Lattice QCD

    Full text link
    Using the constrained curve fitting method and overlap fermions with the lowest pion mass at 180MeV180 {\rm MeV}, we observe that the masses of the first positive and negative parity excited states of the nucleon tend to cross over as the quark masses are taken to the chiral limit. Both results at the physical pion mass agree with the experimental values of the Roper resonance (N1/2+(1440)N^{1/2+}(1440)) and S11S_{11} (N1/2−(1535)N^{1/2-}(1535)). This is seen for the first time in a lattice QCD calculation. These results are obtained on a quenched Iwasaki 163×2816^3 \times 28 lattice with a=0.2fma = 0.2 {\rm fm}. We also extract the ghost ηâ€ČN\eta' N states (a quenched artifact) which are shown to decouple from the nucleon interpolation field above mπ∌300MeVm_{\pi} \sim 300 {\rm MeV}. From the quark mass dependence of these states in the chiral region, we conclude that spontaneously broken chiral symmetry dictates the dynamics of light quarks in the nucleon.Comment: 10 pages, 5 figures, revised version to appear in PL

    Topological Charge Correlators, Spectral Bounds, and Contact Terms

    Get PDF
    The structure of topological charge fluctuations in the QCD vacuum is strongly restricted by the spectral negativity of the Euclidean 2-point correlator for x≠0x\neq 0 and the presence of a positive contact term. Some examples are considered which illustrate the physical origin of these properties.Comment: Lattice 2002 Conference Proceeding

    No-boundary measure and preference for large e-foldings in multi-field inflation

    Full text link
    The no-boundary wave function of quantum gravity usually assigns only very small probability to long periods of inflation. This was a reason to doubt about the no-boundary wave function to explain the observational universe. We study the no-boundary proposal in the context of multi-field inflation to see whether the number of fields changes the situation. For a simple model, we find that indeed the no-boundary wave function can give higher probability for sufficient inflation, but the number of fields involved has to be very high.Comment: 16 pages, 2 figure
    • 

    corecore