3,936 research outputs found

    Cross-sectional study of risky substance use by injured emergency department patients

    Get PDF
    INTRODUCTION: Survey data regarding the prevalence of risky substance use in the emergency department (ED) is not consistent. The objective of this study was to identify the prevalence of risky substance use among injured ED patients based on the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST v3.0). A secondary objective was to report on the feasibility of administering the ASSIST to this population, based on the time to conduct screening. METHODS: This cross-sectional study used screening data from a randomized controlled trial. Injured ED patients completed the ASSIST on a tablet computer, and an ASSIST score was computed that indicated the need for a brief or intensive treatment intervention (risky use) for alcohol and other substances. For a subsample, data on time to complete each step of screening was recorded. RESULTS: Between July 2010 and March 2013, 5,695 patients completed the ASSIST. Most (92%) reported lifetime use of at least one substance and 51% reported current risky use of at least one substance. Mean time to complete the ASSIST was 5.4 minutes and screening was considered feasible even when paused for clinical care to proceed. CONCLUSION: Estimates of risky substance use based on the ASSIST in our large sample of injured ED patients were higher than previously reported in other studies of ED patients, possibly due to the current focus on an injured population. In addition, it was feasible to administer the ASSIST to patients in the course of their clinical care.Published versio

    Synthetic control of a fitness tradeoff in yeast nitrogen metabolism

    Get PDF
    Background: Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. Results: Here, we explored how synthetic control of an endogenous circuit can be used to regulate a tradeoff between fitness in resource abundant and resource limited environments in a population of Saccharomyces cerevisiae. We found that noise in the expression of a key enzyme in ammonia assimilation, Gdh1p, mediated a tradeoff between growth in low nitrogen environments and stress resistance in high ammonia environments. We implemented synthetic control of an endogenous Gdh1p regulatory network to construct an engineered strain in which the fitness of the population was tunable in response to an exogenously-added small molecule across a range of ammonia environments. Conclusion: The ability to tune fitness and biological tradeoffs will be important components of future efforts to engineer microbial communities

    Genetic identification of a novel NeuroD1 function in the early differentiation of islet α, PP and ε cells

    Get PDF
    AbstractNkx2.2 and NeuroD1 are vital for proper differentiation of pancreatic islet cell types. Nkx2.2-null mice fail to form β cells, have reduced numbers of α and PP cells and display an increase in ghrelin-producing ε cells. NeuroD1-null mice display a reduction of α and β cells after embryonic day (e) 17.5. To begin to determine the relative contributions of Nkx2.2 and NeuroD1 in islet development, we generated Nkx2.2−/−;NeuroD1−/− double knockout (DKO) mice. As expected, the DKO mice fail to form β cells, similar to the Nkx2.2-null mice, suggesting that the Nkx2.2 phenotype may be dominant over the NeuroD1 phenotype in the β cells. Surprisingly, however, the α, PP and ε phenotypes of the Nkx2.2-null mice are partially rescued by the simultaneous elimination of NeuroD1, even at early developmental time points when NeuroD1 null mice alone do not display a phenotype. Our results indicate that Nkx2.2 and NeuroD1 interact to regulate pancreatic islet cell fates, and this epistatic relationship is cell-type dependent. Furthermore, this study reveals a previously unappreciated early function of NeuroD1 in regulating the specification of α, PP and ε cells

    LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation.

    Get PDF
    The blood-brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage

    Impact of Metronomic UFT/Cyclophosphamide Chemotherapy and Antiangiogenic Drug Assessed in a New Preclinical Model of Locally Advanced Orthotopic Hepatocellular Carcinoma

    Get PDF
    AbstractHepatocellular carcinoma (HCC) is an intrinsically chemotherapy refractory malignancy. Development of effective therapeutic regimens would be facilitated by improved preclinical HCC models. Currently, most models consist of subcutaneous human tumor transplants in immunodeficient mice; however, these do not reproduce the extensive liver disease associated with HCC or metastasize. To address this deficiency, we developed an orthotopic model. Human HCC cells were transfected with the gene encoding secretable β-subunit human choriogonadotropin (β-hCG), which was used as a surrogate marker of tumor burden. The HCC cells were implanted into the left liver lobe of severe combined immunodeficient (SCID) mice, after which the efficacy of different therapies was evaluated on established, but liver-confined human Hep3B cell line HCC. Treatments included sorafenib or metronomic chemotherapy using cyclophosphamide (CTX), UFT, an oral 5-fluorouracil prodrug, or doxorubicin either alone or in various combinations, with or without an antiangiogenic agent, DC101, an anti-vascular endothelial growth factor receptor-2 antibody. Sorafenib inhibited tumor growth in a dose-dependent manner but caused severe weight loss in SCID mice, thus necessitating use of DC101 in subsequent experiments. Although less toxicity was observed using either single or doublet metronomic chemotherapy without any added antiangiogenic agent, none, provided survival benefit. In contrast, significantly improved overall survival was observed using various combinations of metronomic chemotherapy regimens such as UFT + CTX with DC101. In conclusion, using this model of liver-confined but advanced HCC suggests that the efficacy of a targeted antiangiogenic drug or metronomic chemotherapy can be mutually enhanced by concurrent combination treatment

    The activity of cAMP-Phosphodiesterase 4D7 (PDE4D7) is regulated by protein kinase A-dependent phosphorylation within its unique N-terminus

    Get PDF
    The cyclic AMP phosphodiesterases type 4 (PDE4s) are expressed in a cell specific manner, with intracellular targeting directed by unique N-terminal anchor domains. All long form PDE4s are phosphorylated and activated by PKA phosphorylation within their upstream conserved region 1 (UCR1). Here, we identify and characterise a novel PKA site (serine 42) within the N-terminal region of PDE4D7, an isoform whose activity is known to be important in prostate cancer progression and ischemic stroke. In contrast to the UCR1 site, PKA phosphorylation of the PDE4D7 N-terminus appears to occur constitutively and inhibits PDE4 activity to allow cAMP signalling under basal conditions

    Brn-3b enhances the pro-apoptotic effects of p53 but not its induction of cell cycle arrest by cooperating in trans-activation of bax expression

    Get PDF
    The Brn-3a and Brn-3b transcription factor have opposite and antagonistic effects in neuroblastoma cells since Brn-3a is associated with differentiation whilst Brn-3b enhances proliferation in these cells. In this study, we demonstrate that like Brn-3a, Brn-3b physically interacts with p53. However, whereas Brn-3a repressed p53 mediated Bax expression but cooperated with p53 to increase p21(cip1/waf1), this study demonstrated that co-expression of Brn-3b with p53 increases trans-activation of Bax promoter but not p21(cip1/waf1). Consequently co-expression of Brn-3b with p53 resulted in enhanced apoptosis, which is in contrast to the increased survival and differentiation, when Brn-3a is co-expressed with p53. For Brn-3b to cooperate with p53 on the Bax promoter, it requires binding sites that flank p53 sites on this promoter. Furthermore, neurons from Brn-3b knock-out (KO) mice were resistant to apoptosis and this correlated with reduced Bax expression upon induction of p53 in neurons lacking Brn-3b compared with controls. Thus, the ability of Brn-3b to interact with p53 and modulate Bax expression may demonstrate an important mechanism that helps to determine the fate of cells when p53 is induced

    Evaluation of the Effects of Repeat-Dose Dabrafenib on the Single-Dose Pharmacokinetics of Rosuvastatin (OATP1B1/1B3 Substrate) and Midazolam (CYP3A4 Substrate)

    Get PDF
    Dabrafenib; Drug interaction; PharmacokineticsDabrafenib; Interacción de fármacos; FarmacocinéticaDabrafenib; Interacció de fàrmacs; FarmacocinèticaDabrafenib is an oral BRAF kinase inhibitor approved for the treatment of various BRAF V600 mutation–positive solid tumors. In vitro observations suggesting cytochrome P450 (CYP) 3A induction and organic anion transporting polypeptide (OATP) inhibition prompted us to evaluate the effect of dabrafenib 150 mg twice daily on the pharmacokinetics of midazolam 3 mg (CYP3A substrate) and rosuvastatin 10 mg (OATP1B1/1B3 substrate) in a clinical phase 1, open-label, fixed-sequence study in patients with BRAF V600 mutation–positive tumors. Repeat dabrafenib dosing resulted in a 2.56-fold increase in rosuvastatin maximum observed concentration (Cmax), an earlier time to Cmax, but only a 7% increase in area under the concentration-time curve from time 0 (predose) extrapolated to infinite time. Midazolam Cmax and AUC extrapolated to infinite time decreased by 47% and 65%, respectively, with little effect on time to Cmax. No new safety findings were reported. Exposure of drugs that are CYP3A4 substrates is likely to decrease when coadministered with dabrafenib. Concentrations of medicinal products that are sensitive OATP1B1/1B3 substrates may increase during the absorption phase.This study was sponsored by GlaxoSmithKline; dabrafenib and trametinib are assets of Novartis AG as of March 2, 2015
    • …
    corecore