22 research outputs found

    Near-wall nanovelocimetry based on Total Internal Reflection Fluorescence with continuous tracking

    Full text link
    The goal of this work is to make progress in the domain of near-wall velocimetry. The technique we use is based on the tracking of nanoparticles in an evanescent field, close to a wall, a technique called TIRF (Total Internal Reflection Fluorescence)-based velocimetry. At variance with the methods developed in the literature, we permanently keep track of the light emitted by each particle during the time the measurements of their positions ('altitudes') and speeds are performed. By performing the Langevin simulation, we quantified effect of biases such as Brownian motion, heterogeneities induced by the walls, statistical biases, photo bleaching, polydispersivity and limited depth of field. Using this method, we obtained slip length on hydrophilic surfaces of 1± \pm 5 nm for sucrose solution, and 9± \pm 10 nm for water; On hydrophobic surface, 32± \pm 5 nm for sucrose solution, and 55± \pm 9 nm for water. The errors (based on 95% confidence intervals) are significantly smaller than the state-of-the-art, but more importantly, the method demonstrates for the first time a capacity to measure slippage with a satisfactory accuracy, while providing a local information on the flow structure with a nanometric resolution. Our study confirms the discrepancy already pointed out in the literature between numerical and experimental slip length estimates. With the progress conveyed by the present work, TIRF based technique with continuous tracking can be considered as a quantitative method for investigating flow properties close to walls, providing both global and local information on the flow.Comment: 24 pages, 13 figure

    Structured surfaces for a giant liquid slip.

    No full text

    The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    Full text link
    bird's-eye view, view on roof, looking west southwest to surrounding town, with prayer courtyard in foreground, June 198

    Superhydrophobic drag reduction in laminar flows: a critical review

    Get PDF
    A gas in between micro- or nanostructures on a submerged superhydrophobic (SHPo) surface allows the liquid on the structures to flow with an effective slip. If large enough, this slippage may entail a drag reduction appreciable for many flow systems. However, the large discrepancies among the slippage levels reported in the literature have led to a widespread misunderstanding on the drag-reducing ability of SHPo surfaces. Today we know that the amount of slip, generally quantified with a slip length, is mainly determined by the structural features of SHPo surfaces, such as the pitch, solid fraction, and pattern type, and further affected by secondary factors, such as the state of the liquid–gas interface. Reviewing the experimental data of laminar flows in the literature comprehensively and comparing them with the theoretical predictions, we provide a global picture of the liquid slip on structured surfaces to assist in rational design of SHPo surfaces for drag reduction. Because the trapped gas, called plastron, vanishes along with its slippage effect in most application conditions, lastly we discuss the recent efforts to prevent its loss. This review is limited to laminar flows, for which the SHPo drag reduction is reasonably well understood

    Mesoporous Highly-Deformable Composite Polymer for a Gapless Triboelectric Nanogenerator via a One-Step Metal Oxidation Process

    No full text
    The oxidation of metal microparticles (MPs) in a polymer film yields a mesoporous highly-deformable composite polymer for enhancing performance and creating a gapless structure of triboelectric nanogenerators (TENGs). This is a one-step scalable synthesis for developing large-scale, cost-effective, and light-weight mesoporous polymer composites. We demonstrate mesoporous aluminum oxide (Al2O3) polydimethylsiloxane (PDMS) composites with a nano-flake structure on the surface of Al2O3 MPs in pores. The porosity of mesoporous Al2O3-PDMS films reaches 71.35% as the concentration of Al MPs increases to 15%. As a result, the film capacitance is enhanced 1.8 times, and TENG output performance is 6.67-times greater at 33.3 kPa and 4 Hz. The pressure sensitivity of 6.71 V/kPa and 0.18 μA/kPa is determined under the pressure range of 5.5–33.3 kPa. Based on these structures, we apply mesoporous Al2O3-PDMS film to a gapless TENG structure and obtain a linear pressure sensitivity of 1.00 V/kPa and 0.02 μA/kPa, respectively. Finally, we demonstrate self-powered safety cushion sensors for monitoring human sitting position by using gapless TENGs, which are developed with a large-scale and highly-deformable mesoporous Al2O3-PDMS film with dimensions of 6 × 5 pixels (33 × 27 cm2)
    corecore