624 research outputs found

    DOCmT5: Document-Level Pretraining of Multilingual Language Models

    Full text link
    In this paper, we introduce DOCmT5, a multilingual sequence-to-sequence language model pretrained with large scale parallel documents. While previous approaches have focused on leveraging sentence-level parallel data, we try to build a general-purpose pretrained model that can understand and generate long documents. We propose a simple and effective pretraining objective - Document reordering Machine Translation (DrMT), in which the input documents that are shuffled and masked need to be translated. DrMT brings consistent improvements over strong baselines on a variety of document-level generation tasks, including over 12 BLEU points for seen-language-pair document-level MT, over 7 BLEU points for unseen-language-pair document-level MT and over 3 ROUGE-1 points for seen-language-pair cross-lingual summarization. We achieve state-of-the-art (SOTA) on WMT20 De-En and IWSLT15 Zh-En document translation tasks. We also conduct extensive analysis on various factors for document pretraining, including (1) The effects of pretraining data quality and (2) The effects of combining mono-lingual and cross-lingual pretraining. We plan to make our model checkpoints publicly available.Comment: NAACL 2022 Finding

    Fabrication of Silver Interdigitated Electrode by a Stamp Method

    Get PDF
    A stamp method was developed in this study to fabricate interdigitated electrodes (IDEs) on glass substrate from a 37.5 wt% silver ink. This method is simple and fast. A small amount of silver ink was first dripped into an IDE-patterned sponge of a stamp and then one could stamp out the desired IDE pattern made of nanosized silver colloids on a glass substrate, which was subsequently sintered at 280°C for 10 minutes to obtain the final silver IDE. Our brief study showed that when a large stamping force was used, more ink would be stamped out in the beginning and it decreased after each usage. However, if the force was too small, there would not be sufficient ink for a complete IDE. There existed therefore an optimal force to fabricate IDEs with minimal changes from sample to sample. The average dimension of an IDE when the applied force was 102 gm was roughly 403 ± 20 µm in width and 1154 ± 153 nm in height, and the average final electrical resistivity was about 10×10-6 Ω-cm

    Anti-Hyperglycemic Properties of Crude Extract and Triterpenes from Poria cocos

    Get PDF
    Poria cocos, Bai Fu Ling in Chinese, is used in traditional Chinese medicine to treat diabetes. However, its claimed benefits and mechanism are not fully understood. This study aimed to investigate the effect and action of P. cocos on type 2 diabetes. We first performed phytochemical analysis on the crude extract and factions of P. cocos. P. cocos crude extract at 50 mg/kg body weight or more significantly decreased blood glucose levels in db/db mice. Based on a bioactivity-directed fractionation and isolation (BDFI) strategy, chloroform fraction and subfractions 4 and 6 of the P. cocos crude extract possessed a blood glucose-lowering effect. Dehydrotumulosic acid, dehydrotrametenolic acid, and pachymic acid were identified from the chloroform sub-fractions 4, 3, and 2, respectively. Dehydrotumulosic acid had anti-hyperglycemic effect to a greater extent than dehydrotrametenolic acid and pachymic acid. Mechanistic study on streptozocin- (STZ-) treated mice showed that the crude extract, dehydrotumulosic acid, dehydrotrametenolic acid, and pachymic acid of P. cocos exhibited different levels of insulin sensitizer activity. However, the P. cocos crude extract and triterpenes appeared not to activate PPAR-γ pathway. Overall, the data suggest that the P. cocos extract and its triterpenes reduce postprandial blood glucose levels in db/db mice via enhanced insulin sensitivity irrespective of PPAR-γ

    Green tea extract supplementation ameliorates CCl4-induced hepatic oxidative stress, fibrosis, and acute-phase protein expression in rat

    Get PDF
    Background/PurposeWe evaluated the long-term effects of green tea extract (GTE) supplementation on oxidative stress, biliary acute phase protein expression, and liver function in CCl4-induced chronic liver injury.MethodsWe evaluated the antioxidant activity of GTE in comparison with those of vitamin C, vitamin E, and β-carotene in vitro by using an ultrasensitive chemiluminescence analyzer. Chronic liver injury was induced by intraperitoneally administering carbon tetrachloride (CCl4) (1mL/kg body weight, twice weekly) to female Wistar rats for 8 weeks. The effects of low (4mg/kg body weight per day) and high (20mg/kg body weight per day) doses of intragastric GTE on CCl4-induced liver dysfunction and fibrosis were examined by measuring the bile and blood reactive oxygen species levels and biochemical parameters by using Western blot and two-dimensional polyacrylamide gel electrophoresis techniques.ResultsGTE has greater scavenging activity against O2–, H2O2, and Hypochlorous acid (HOCl) in vitro than vitamin C, vitamin E, and β-carotene do. In vivo, CCl4 markedly increased bile and blood reactive oxygen species production, lipid accumulation, number of infiltrated leukocytes, fibrosis, hepatic hydroxyproline content, and plasma alanine aminotransferase and aspartate aminotransferase activities, and reduced plasma albumin levels. Two-dimensional polyacrylamide gel electrophoresis revealed that CCl4 increased the acute-phase expression of six biliary proteins and decreased hepatic B-cell lymphoma 2 (Bcl-2), catalase, and CuZn superoxide dismutase protein expression. GTE supplementation attenuated CCl4-enhanced oxidative stress, levels of biochemical parameters, pathology, and acute-phase protein secretion, and preserved antioxidant/antiapoptotic protein expression.ConclusionGTE supplementation attenuates CCl4-induced hepatic oxidative stress, fibrosis, acute phase protein excretion, and hepatic dysfunction via the antioxidant and antiapoptotic defense mechanisms

    Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations

    Get PDF
    The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM). Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively), and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV). In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current
    corecore