83,884 research outputs found

    A First-Principles Study of the Electronic Reconstructions of LaAlO3/SrTiO3 Heterointerfaces and Their Variants

    Full text link
    We present a first-principles study of the electronic structures and properties of ideal (atomically sharp) LaAlO3/SrTiO3 (001) heterointerfaces and their variants such as a new class of quantum well systems. We demonstrate the insulating-to-metallic transition as a function of the LaAlO3 film thickness in these systems. After the phase transition, we find that conduction electrons are bound to the n-type interface while holes diffuse away from the p-type interface, and we explain this asymmetry in terms of a large hopping matrix element that is unique to the n-type interface. We build a tight-binding model based on these hopping matrix elements to illustrate how the conduction electron gas is bound to the n-type interface. Based on the `polar catastrophe' mechanism, we propose a new class of quantum wells at which we can manually control the spatial extent of the conduction electron gas. In addition, we develop a continuous model to unify the LaAlO3/SrTiO3 interfaces and quantum wells and predict the thickness dependence of sheet carrier densities of these systems. Finally, we study the external field effect on both LaAlO3/SrTiO3 interfaces and quantum well systems. Our systematic study of the electronic reconstruction of LaAlO3/SrTiO3 interfaces may serve as a guide to engineering transition metal oxide heterointerfaces.Comment: 50 pages, 18 figures and 4 table

    Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Get PDF
    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost

    Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis

    Full text link
    In this work we perform theoretical analysis about a coupled RC circuit with constant driven currents. Starting from stochastic differential equations, where voltages are subject to thermal noises, we derive time-correlation functions, steady-state distributions and transition probabilities of the system. The validity of the fluctuation theorem (FT) is examined for scenarios with complete and incomplete descriptions.Comment: 4 pages, 1 figur

    Nitrogen doping of TiO2 photocatalyst forms a second eg state in the Oxygen (1s) NEXAFS pre-edge

    Full text link
    Close inspection of the pre-edge in oxygen near-edge x-ray absorption fine structure spectra of single step, gas phase synthesized titanium oxynitride photocatalysts with 20 nm particle size reveals an additional eg resonance in the VB that went unnoticed in previous TiO2 anion doping studies. The relative spectral weight of this Ti(3d)-O(2p) hybridized state with respect to and located between the readily established t2g and eg resonances scales qualitatively with the photocatalytic decomposition power, suggesting that this extra resonance bears co-responsibility for the photocatalytic performance of titanium oxynitrides at visible light wavelengths

    Designing interaction for a multi-touch wall

    Get PDF
    As large-scale display and multi-touch technologies become more affordable, the market has seen the development of multi-touch walls. This new medium offers a unique mix of information density, direct interactivity and collaboration support, and the new features have radical effects on interaction design. Here we explore some research issues together with proposed solutions and some design suggestions, based on our own approach to three areas of interaction design: multi-touch input, user interface and co-located collaboration
    corecore