360 research outputs found

    Temperature effects on methanogenesis and sulfidogenesis during anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch reactors

    Get PDF
    Methanogenesis and sulfidogenesis, the major microbial reduction reactions occurring in the anaerobic digestion (AD) process, compete for common substrates. Therefore, the balance between methanogenic and sulfidogenic activities is important for efficient biogas production. In this study, changes in methanogenic and sulfidogenic performances in response to changes in organic loading rate (OLR) were examined in two digesters treating sulfur-rich macroalgal waste under mesophilic and thermophilic conditions, respectively. Both methanogenesis and sulfidogenesis were largely suppressed under thermophilic relative to mesophilic conditions, regardless of OLR. However, the suppressive effect was even more significant for sulfidogenesis, which may suggest an option for H2S control. The reactor microbial communities developed totally differently according to reactor temperature, with the abundance of both methanogens and sulfate-reducing bacteria being significantly higher under mesophilic conditions. In both reactors, sulfidogenic activity increased with increasing OLR. The findings of this study help to understand how temperature affects sulfidogenesis and methanogenesis during AD

    Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species

    Get PDF
    Potential of microalgal cultivation as an alternative approach to the treatment of anaerobic digestion (AD) effluents was examined using two representative Chlorella species, Chlorella vulgaris (CV) and Chlorella protothecoides (CP). Both species effectively removed NH 4 + -N from the AD effluents from four digesters treating different wastes under different operating conditions. In all experimental cultures on the AD effluents, NH 4 + -N (initial concentration, 40 mg/L) was completely removed within 10 days without residual NO 3 ??? -N or NO 2 ??? -N in batch mode. Compared to CP, CV showed greater biomass and lipid yields (advantageous for biodiesel production), regardless of the media used. Prolonged nitrogen starvation significantly increased the lipid accumulation in all cultures on the AD effluents, and the effect was more pronounced in the CV than in the CP cultures. On the other hand, compared to CV, CP showed significantly faster settling (advantageous for biomass harvesting) in all media. Our results suggest that the Chlorella cultivation on AD effluents under non-sterile, mixed-culture conditions may provide a viable way to manage and valorize the problematic effluents. Diverse bacteria derived from the AD effluents co-existed and presumably interacted with the Chlorella species in the cultures. ?? 2019, The Author(s)

    Effect of Mild-Temperature Thermo-Alkaline Pretreatment on the Solubilization and Anaerobic Digestion of Spent Coffee Grounds

    Get PDF
    Mild-temperature thermo-alkaline pretreatment of spent coffee grounds (SCG) was studied to improve its solubilization and methanation. The simultaneous effects of NaOH concentration (0-0.2 M) and temperature (60-90 ??C) were investigated. Significant solubilization of SCG was achieved by the pretreatment, particularly under high-NaOH-concentration and high-temperature conditions. However, adding NaOH above a certain concentration adversely affected the methane production. Therefore, the degree of solubilization (SD) correlated poorly with methane yield (Ym). Response surface models of SD and Ym were successfully generated. The maximum response of SD (36.4%) was obtained at 0.18 M NaOH and 90.0 ??C, while that of Ym (263.31 mL CH4/g COD added) was obtained at 0.13 M NaOH and 70.5 ??C. Hydrogenotrophic Methanospirillum species were the dominant methanogens in all the SCG digestion tests. It is likely that NaOH concentration had a more significant influence on the development of microbial community structure, particularly of methanogens than temperature

    Biomethanation of Harmful Macroalgal Biomass in Leach-Bed Reactor Coupled to Anaerobic Filter: Effect of Water Regime and Filter Media

    Get PDF
    Ulva is a marine macroalgal genus which causes serious green tides in coastal areas worldwide. This study investigated anaerobic digestion as a way to manage Ulva waste in a leach-bed reactor coupled to an anaerobic filter (LBR-AF). Two LBR-AF systems with different filter media, blast furnace slag grains for R1, and polyvinyl chloride rings for R2, were run at increasing water replacement rates (WRRs). Both achieved efficient volatile solids reduction (68.4-87.1%) and methane yield (148-309 mL/g VS fed) at all WRRs, with the optimal WRR for maximum methane production being 100 mL/d. R1 maintained more stable methanation performance than R2, possibly due to the different surface properties (i.e., biomass retention capacity) of the filter media. Such an effect was also noted in the different behaviors of the LBR and AF between R1 and R2. The molecular analysis results revealed that the development of the microbial community structure in the reactors was primarily determined by the fermentation type, i.e., dry (LBR) or wet (AF)

    Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent

    Get PDF
    As the global production of chicken manure has steadily increased, its proper management has become a challenging issue. This study examined process effluent from a bioethanol plant as a co-substrate for efficient anaerobic digestion of chicken manure. An anaerobic continuous reactor was operated in mono- and co-digestion modes by adding increasing amounts of the ethanol plant effluent (0%, 10%, and 20% (v/v) of chicken manure). Methanogenic performance improved significantly in terms of both methane production rate and yield (by up to 66% and 36%, respectively), with an increase in organic loading rate over the experimental phases. Correspondingly, the specific methanogenic activity was significantly higher in the co-digestion sludge than in the mono-digestion sludge. The reactor did not suffer any apparent process imbalance, ammonia inhibition, or nutrient limitation throughout the experiment, with the removal of volatile solids being stably maintained (56.3???58.9%). The amount of ethanol plant effluent appears to directly affect the rate of acidification, and its addition at ???20% (v/v) to chicken manure needs to be avoided to maintain a stable pH. The overall results suggest that anerobic co-digestion with ethanol plant effluent may provide a practical means for the stable treatment and valorization of chicken manure
    • โ€ฆ
    corecore