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1. Introduction 

Robotic-powered exoskeletons and body joint-adapted assistive units are currently under 
development for the enhancement of human locomotor performance in the military, in 
industries, and in patients and the elderly with mobility impairments [1]. They free people 
from much labor and the burdens of many kinds of manual work. For example, when it 
comes to automation in the industrial field, factory automation has made good progress. 
Operators (humans) can be included in a conventional manufacturing process with respect 
to a formal production line and uniform working conditions. Automation outside the 
production line, however, especially in common manufacturing stages, has several 
limitations and difficulties in adapting to actual conditions because the industrial field has 
but a small part in the process due to its operating characteristics. There have been many 
approaches to the reduction of labor that do not only fully assist but also partly aid workers, 
such as in the use of extremely heavy payload-oriented construction equipment, which are 
manipulated by humans. Manual or semi-automatic machine tools are mostly used in 
contemporary industries. In particular, without manpower, especially without the 
manipulability and mobility of the upper and lower human limbs, full automation will be 
incompatible with today’s technologies [2]. Exoskeletons have strong advantages given their 
unique features such as their outstanding physical performance, exceeding that of humans, 
and their agility, which is utilized by operators’ nerve systems. As a result, attempts to 
adopt exoskeletons in the industrial field, especially at construction sites, indicate the use of 
feasible approaches to factory automation. The strategy and support method for 
exoskeletons that amplify human muscle power can be divided into four main categories: 
(1) exoskeletons that totally alternate with both the upper and lower parts of the muscle 
power system, (2) assist the all extremities not alternate (here, assist means the human share 
the load with the exoskeleton and alternate means the human just input operation command 
using his own motion into exoskeleton system and it totally handles the load), (3) alternate 
with the part of all extremities (4) assist the part of all extremities of muscle power system. 
The first type of exoskeleton which alternates with the entire muscle power still has many 
limitations, as with its size and electric power supply. Due to these constraints, exoskeletons 
are usually bulky and cannot freely move out of the range of the power source line. One of 
the representative studies of the second type which assists the whole body is the HAL series. 
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HAL utilizes the EMG signal for its command signal [3]. Moreover it shares external loads 
with humans, that is partly assists the human’s loads but it is still requires much patience to 
wear and difficult to maintain the quality of EMG signal for every wearing. 
 

  

(a) The Exoskeleton Design Concept Introduced in the Movie Clip (‘Alien II’ and ‘Matrix 
Revolution’) 

    

(b) Exoskeleton System for Whole Body Support ('XOS' of SARCOS and 'HAL' of Cyberdyne Inc.) 

Fig.1. Developed Exoskeleton Systems to Support the Whole Body 

As taken into account in the earlier three cases, the research target for the development of 
exoskeletons can fall under the fourth type: the partly assistive muscle power system, 
especially the leg assistive system. Many institutions around the world have carried out 
research and development on exoskeletons and assistive devices in order to empower or aid 
human lower limbs. A well-known system, BLEEX, can partly alternate with the human 
muscle power system. This system provides a versatile load transport platform for mission-
critical equipment, so it has several applications without the strain associated with 
demanding labor such as that of soldiers, disaster relief workers, fire-fighters, and so on [4]. 
Northeastern University’s Active Knee Rehabilitation Device (AKROD), Yobotics 
Incorporation's RoboKnee, and the NTU-LEE rehabilitation prototype are some of the state-
of-the-art developments in the area of assistive devices to aid the human limb [5, 6, 7]. 
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(a) BLEEX (U.C. Berkeley) 

   
(b) Active Knee Rehabilitation Orthotic Device-‘AKROD’ (Northeastern Univ.) 

  
(c) ‘RobotKnee’ (Yobotics) 

Fig. 2. Leg Assistive Exoskeletons 
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In addition to the systems in Fig.2, many kinds of knee assistive robots are focused on 

medical service or rehabilitation. The purpose of this device is to share the load or pressure 

acting on the knee in order to relieve pain or speed up the healing process without 

disrupting normal daily activities. This is likely to be a potentially useful research area due 

to the rising number of sports-related injuries and the increasingly aging world population 

[8]. Obviously, this concept can be applied to assist in daily life walking and laborious work 

in the industrial area. For the purpose of industrial usages, however, operational 

convenience and compactness of the system is strongly considered. This means that the 

system has to be designed as wieldy and can easily be synchronized with a human. 

To solve this problem, innovative sensor suits have been developed, which can be put on by 

an operator to detect his or her motion intention by monitoring his or her muscle conditions 

such as shape, stiffness, and density. As shown in Fig.3, these sensors are made of soft and 

elastic fabricsembedded with arrays of MEMS sensors such as muscle stiffness sensor (MSS), 

ultrasonic sensors, accelerometers, and optical fiber sensors to measure different kinds of 

human muscle conditions [9]. The developers of these sensor systems emphasized its 

 

 

(a) Muscle stiffness sensor (Takakazu Ishimatsu) 

 

(b) Auto-calibration system for EMG sensor suit (Maria Q. Feng) 

 

(c) Ultrasonic muscle activity sensor (S. Moromugi) 

Fig. 3. Various Sensor Systems for Human Motion Detection 
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convenience and ease to adapt to humans. These sensors, however, are too complicated to 

manufacture or are only verified to perform on a certain part of the human body. The EMG 

sensor is one of the most accurate measurement tools to determine human motion intensity. 

The approach using this sensor, however, is not considered in this study because of its 

inconvenient preparation to assess the signals and its inappropriateness for the working 

conditions at a construction site. 

In this study, a feasible modular-type exoskeleton system and corresponding sensor systems 

are newly proposed to assist construction workers with their lower limb movements. First, 

for the purpose of adapting the modular-type exoskeleton system for lower limb assistance 

at construction sites, several construction work groups were defined based on specific 

boundaries. Second, the design process for the modular-type lower extremity focused on the 

knee joint movement will be presented based on the confined boundary. Third, intent signal 

processing methods for actuating a proposed system were introduced, and the feasibility of 

the command signal was estimated. There were then several measures to quantify the 

characteristics of human performance and the exoskeleton platform through an EMG signal 

(This sensor is used as a measurement tool of muscle activity only to verify the feasibility of 

the proposed system). 

2. Analysis for designing the system  

2.1 Occupational analysis 

In the next step, the research target was brought into the part it would assist. For the sake of 

embodiment, we first defined the target task at a usual construction site through a work 

pattern analysis, which is strongly related to occupational disorders. Arndt et al. (2008) 

conducted a 10-year follow-up research on 14,474 male construction workers. He reported 

that musculoskeletal diseases led to an increased proportion of occupational disability [10]. 
 

 

Fig. 4. Construction Workers’ Disability Ratio (NIOSH) 

The fatal injuries of construction workers-musculoskeletal diseases-were mainly divided 

into two dominant disabilities: dorsopathies and arthropathies. According to statistical and 

the annual reports of the National Institute of Occupational Safety and Health (NIOSH), it is 
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easy to have primary disability at a construction site. The reports classified the standard 

incidents into all causes and specific disabilities. Dorsopathies, arthropathies, and knee joint 

disorders accounted for 21.2%, 10.5%, and 8.7% respectively, and occurred most frequently 

at the site (Fig.4). Considering the priority of development and convenience of real 

adaptation, we choose the knee assistive wearable system firstly not spine assist one. 

Moreover, the working index of NIOSH recommends that construction workers’ spinal 

columns should not be rapidly bent and their posture should be kept perpendicular to the 

ground during manual construction work. That means a spine support system has to be 

considered as support system not assist one. Therefore, this paper designed this specific part 

of the body-knee joint of the type that partly assists the knee joint (Fig.5).  

The following are the specifications of the system in this research: 

• Occupational target: Construction worker 

• Target region: Knees (The weight of the system is borne by the combined shank-ankle 
orthotics) 

• Target motions: Kneeling, lifting objects, and climbing a staircase or a slope 

 

Fig. 5. Decision of Assistant Position Considering Two Dominant Causes of Disability of 
Construction Workers 

2.2 Definition of the target task 

To specify the target tasks at a construction, we follow these process steps. First, we looked 

at an overview of working patterns and types at construction sites. The overview was 

sourced from NIOSH. In the second step, construction workers-especially the general 

laborers-were classified into four major groups. As shown in step 2 under Fig.6, sheet metal 

workers, electricians, laborers, and cement masons were put in charge of each group. 

Finally, in the third step, based on the occupational common task of upper groups, target 
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tasks were selected which included heavy material handling using knee, loaded level 

walking, loaded ascent walking, and loaded descent walking. 

As earlier mentioned, we developed a modular-type exoskeleton system to assist the lower 
limb, and we applied this mechanism in a real construction site. Thus, the target mission to 
handle heavy materials and loads at ground level and on a stairway, which is described in 
the following images, is critically considered. 

 

Fig. 6. Work group analysis for construction workers 

3. Mechanics of muscle activity at the knee 

3.1 Extensors of the knee  

Rectus femoris functions as an extensor of knee extension, hip flexion, lateral rotation of the 
hip, and abduction of the hip [12,13]. Regarding the effect of its weaknesses, direct 
measurements of the contribution made by the rectus femoris to knee extension strength are 
not available. However, the physiological cross-sectional area of the rectus femoris is 
approximately 15% of the total quadriceps femoris muscle mass. Therefore, its negative 
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effect on a knee is as much as this contribution [14]. Vastus intermedius functions as an 
extensor of knee extension and prevents impingement of the pouch in the patellofemoral 
joint.  It is based on the physiological cross-sectional area range from approximately 15~40% 
of the total muscle bulk [14]. Vastus lateralis is a large pinnate muscle, and its uncontested 
action is knee extension. The amount of its recruitment is proportional to the amount of 
resistance to extension [15]. If its activity is diminished, knee extension strength is reduced. 
Its physiological cross-sectional area suggests that in some individuals, the vastus lateralis 
may contribute 40% of the extension strength of the knee [16]. Vastus medialis is the most 
studied among the four heads of the quadriceps femoris muscle [15]. It is divided into two 
sections, VML (Longus) and VMO (Oblique), based on both anatomical and mechanical 
analysis. It is approximately 20 to 35% of the overall cross-sectional area of quadriceps 
femoris. It functions as an extensor of knee extension and for the stabilization of the patella 
during knee extension [16,17,18]. 
 

 

 

Fig. 7. Primary Knee Extensors, Flexors, and Plantar Flexor Muscles Focused in this Study 

3.2 Flexors of the knee  

The hamstring muscles represent the primary flexors of the knee. Hamstrings comprise of 
the biceps femoris longus and brevis, which form the lateral mass of the hamstrings, and the 
semimembranosus and semitendinosus, which make up the medial mass. The major 
functions of the hamstring are knee flexion, hip extension, medial rotation, lateral rotation of 
the knee, medial rotation of the hip, lateral rotation of the hip, and adduction of the hip. 
Hamstrings provide between 30 and 50% of hip extension strength and are active during 
normal locomotion. The most prominent period of activity is during the transition between 
the swing and stance periods of the gait cycle. During locomotion, the role of hamstrings’ 
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activity is to slow down the extension of the knee during late swing, and to help extend the 
hip in the stance phase. 

3.3 Mechanics of the two-joint muscles in the knee  

The knee is controlled mostly by two-joint muscles that cross either the hip and knee, or the 
knee and ankle. Contraction of one of these muscles alone produces movement in all of the 
joints that the muscle crosses. To isolate movement at a single joint, the two-joint muscles 
cross or they must contract with other muscles. The iliopsoas and the hamstrings, as an 
example, together produce isolated knee flexion by canceling each other’s effect at the hip. 
Similarly, simultaneous contraction of the gluteus maximus and quadriceps femoris 
produces knee extension without hip flexion. However, the knee more frequently displays 
simultaneous contraction of the quadriceps and hamstrings. This unusual pattern of 
simultaneous contraction of two-joint muscles appears to increase the ability of the knee and 
hip to generate the large moments needed during many activities [14]. 

4. System operation method – trial (1) 

4.1 Angular displacement of the knee joint 
Following the steps shown in the previous chapter, the final target task was defined more 
specifically. We decided to devise a modular-type exoskeleton system for lower limb 
assistance, that is, for handling heavy materials during level walks and on stairways. To 
gather adequate motivation signals when the construction workers do their jobs at the site, 
first, an analysis of knee joint movements was needed. Fundamentally, the muscle activation 
status is completely different during level walks and on stairways. Figure.8 and Figure.9 
show which parts of the muscle groups are mainly related to knee joint movement during 
level walks. Thus, a different type of gait pattern is created for a dissimilar muscle activation 
phase. In the case of the knee joint movement, three DOFs with angular rotations are 
possible during the level walk. 
The primary motion is knee flexion-extension with respect to a mediolateral axis. Knee 
internal-external rotation and adduction-abduction (varus-valgus) also occur among healthy 
individuals, but with less consistency and amplitude due to their soft tissue and bony 
constraints to these motions. The information presented in this chapter was gathered from 
the work of Spivak and Zuckerman (1998). The following table shows the range of normal 
values of normal adult gaits at a free walking velocity. These values were used as reference 
values while we performed the experiments. 
 

Contents Values 

Stride or cycle time 1.0 to 1.2 m/sec 

Stride or cycle length 1.2 to 1.9 m 

Step length 0.56 to 1.1 m 

Step width 7.7 to 9.6 cm 

Cadence 90 to 140 steps/min 

Velocity 0.9 to 1.8 m/sec 

Table 1. Range of Normal Values for the Time-Distance Parameters of Adult Gaits at a Free 
Walking Velocity (Spivak and Zuckerman) 
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Fig. 8. Phasic Pattern of the EMG Activity of the Muscle and the Angular Displacement of 
the Knee during Level Walking by Healthy Adults 

4.2 Extraction of the muscle activity pattern 
During the stance phase, the quadriceps muscle group is relied on to control its tendency 
towards knee flexion collapse with weight acceptance and single limb support. This muscle 
group is activated during terminal swinging and then acts eccentrically during weight 
acceptance, as the knee rotates from the fully extended position during the initial contact to 
its peak support phase flexion of approximately 20 degrees during the loading response. 
Thereafter, the quadriceps act concentrically to extend the knee through an early mid-stance, 
as the body’s center of extremity mass is raised vertically over the supporting limb and the 
anterior orientation of the ground reaction force vector precludes the need for further 
muscular control of knee flexion. Most hamstring muscles are activated in the late mid-
swing or the terminal swing. Their function with respect to the knee is probably to control 
the angular acceleration of the knee extension. The short head of the biceps femoris is 
activated earlier and probably assists in flexing the knee for foot clearance.  
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(a) Muscle Activity Pattern of Anterior Side of the Leg during Walking and Proposed Sensor 
Position ‘1’ 

 
(b) Muscle Activity Pattern of Posterior Side of the Leg during Walking and Proposed 
Sensor Position '2' and '3' (Position '2' is discarded finally) 

Fig. 9. Muscle Activity Pattern of Leg and Proposed Sensor Position for Exoskeleton 

The gracilis and sartorius muscles may also contribute to swing-phase knee flexion when 
they are activated during late pre-swing, initial swing, and early mid-swing. These muscles, 
however, may very well be acting as primary hip flexors during this period [19]. Based on 
Fig.8, we analogize that to explain or measure the gait pattern using the muscle activity 
pattern, we must consider three positions of the muscle groups. 
In this study, however, we propose a method that uses only two muscle sensing groups. 
Although this approach is not perfect, it reduced the MSS module in the proposed system 
and minimized the loads in the processing system. We decided to disregard the sensor 
position (2) because we could explain the muscle activity pattern during the entire cycle 
using only (1) and (3). Fig.9 describes the sensor position of the anterior side (1) and the 
posterior side (3) of the sensor position we chose. The gray areas represent activation below 
20% of the maximum voluntary contraction, and black areas represent activation above 20% 
of the maximum voluntary contraction. Muscle activation means Knee Assistive System 
(KAS) is inflated at the moment when the foot of the user touches the ground; the 
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flexion/extension movement occurs in succession and cross-happens within one gait cycle. 
It seemed to be comprised of only one event, without intermission. Therefore, these 
successive movements could be organized into a single case. As shown in Fig.6, the 
proposed algorithm was gradually adjusted to the wearers, such as by calibrating the sensor 
system and regulating the velocity as with fine-tuning before starting the machinery, in 
order to develop a handy prototype of the system that is easy to wear. However, the trial of 
event treatment using a two-sensor set and its customized limit value was not easy to apply 
to various users because the acquired values for each person were inconsistent in every 
experiment. Therefore, the more convenient approach of using the restricted number of 
sensors and minimizing the calibration process is required. The results of the verification of 
the effects of muscle power assistance through repeated experiments with KAS and an EMG 
signal sensing device will be introduced in the last chapter. 
 

##mfg_i= ith motor sensing group 
##Counter clock wise rotation of motor : Positive and 
Extension motion of knee 
##lim=Lower Limit (User-define value) 
 
If (min(mfg_03, mfg_01)>lim) then, 
              If (Knee_theta>50) then, 
              Knee_dtheta=0  
              else if (mfg_03>=mfg_01) then, 
              Knee_dtheta=motor velocity 
              else 
              Knee_dtheta=-(motor velocity) 
 
Else if (max(mfg_03, mfg_01)<lim) then, 
              If (Knee_theta>50) then, 
              Knee_dtheta=0 
              else if (mfg_03<mfg_01) then, 
              Knee_dtheta=motor velocity  
              else 
              Knee_dtheta=-(motor velocity) 
                      End 
End 

Fig. 10. Operation Algorithm of KAS using MSS 

5. System operation method – trial (2) 

To cope the above-mentioned problem, we newly designed the activation algorithm as a 
second trial. To explain the second trial of the activation algorithm for KAS, a simplified 
muscle activation pattern of two muscles is introduced. The positions of these muscles are 
exactly the same as with the sensor attached one. 
To activate a KAS, a cross-activation algorithm is designed to use the event of simultaneous 
contraction of two-joint muscles (which appears to increase the ability of the knee and hip) 
as an activating signal of reciprocation motion of opposite side knee exoskeleton. 
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(a) Newly Designed Operation Algorithm for Level Walking 

 
(b) Newly Designed Operation Algorithm for Step Walking 

Fig. 11. Operation Algorithm of KAS – Trial (2) 
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An important thing of this algorithm is activation timing of the exoskeleton. Though this 
algorithm uses the event of simultaneous contraction to activate the opposite side, in the 
meantime, the two simultaneous contracting muscles are assisted by their own exoskeleton. 
As described in Chapter 6, this algorithm brings three effects for the wearer’s muscle 
activation pattern. First is the reduction of required strength for simultaneous contracting, 
second is pattern shifting of sequential muscle activation, and the last is, as shown in 
Fig.11(b), the possibility to use this directly as an ascent walking algorithm. Consequently, 
the performance of the second trial algorithm is better than the first one and is thus selected 
as an operation algorithm of KAS. 

6. System development  

6.1 Exoskeleton unit 
As mentioned earlier in this chapter, we analyzed the gait pattern based on the muscle 
activity pattern and the angular displacement of the knee joint. Finally, we deduced the 
proper sensor position (using only two MSS groups) and the basic operating algorithm. In 
this chapter, we briefly introduce our experimental exoskeleton system. Fig.12 shows the 
user-convenient knee movement assistive system that was devised by applying commercial 
 

 

 

Fig. 12. Exoskeleton Unit of the KAS 

knee joint orthotics and minimizing the number of actuating systems. Using a harmonic 
drive especially prevents a backlash of the motor shaft and the link unit. The system was 
devised using the following biomechanical and statistical approach. For most of the stance 
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phase, the flexion was less than 20 degrees, and the quadriceps muscle force during level 
walking depended on the body weight, the magnitude of muscle force, the joint reaction 
force, and so on. Reilly and Martens (1972) found the highest value for the quadriceps 
muscle force during level walking, which is 804 N (180.7 lbs) [20]. Considering both the 
maximum required force value on the quadriceps and the type of system–which partly 
assists the lower human limb motion, the specifications of the flat motor (Maxon®) and the 
harmonic drive (THK™) are enough to cover the requirements. The stall torque, gear ratio, 
and gear efficiency were 4,670mNm, 100:1, and approximately 70%. Therefore, the motor 
output torque was estimated as 1.63 times more than the requirement. When it comes to the 
research target of partly assisting human motion, the proposed system feasibly 
accomplishes the goal of this research. Moreover, it can theoretically add approximately 
45kg more payload to construction workers. 

6.2 Muscle Stiffness Sensor (MSS) and control system 
We designed MSS to acquire the signal for the degree of expansion of the muscle and to use this 
signal as a human intensity signal to operate the proposed KAS (Fig.13). EMG is typically combined 
with stride or angular kinematic analysis to provide information on phasic muscle activation 
patterns. EMG helps explain the motor performance underlying the kinematic and kinetic 
characteristics of gaits. In this paper, we tried to prove the efficiency of KAS using the EMG test.  
 

 

Fig. 13. Custom-Made MSS and Its Performance Test 

    

Fig. 14. Walking Experiments Using KAS 
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Fig. 15. Performance Verification of KAS using EMG Sensor 

The experiment is preceded by the following steps. First, we obtained the EMG signal of 

healthy subjects while they walked on a treadmill and a step by carrying the 10kg weight. 

After that, we asked them to wear the exoskeleton system we developed. The subject then 

repeated the procedure with the same walking speed. Finally, we gathered the EMG signal 

history and verified its feasibility adapted by the industrial fields. 

7. Experiments and conclusions 

Experiments are set up with two topics: with payloads (10kg) and without KAS and with 

payloads and with KAS. During each experiment, EMG signals are gathered by four 

channels, and their sampling frequency and gain value was 1024Hz and 1126.7uV, 

respectively. These channels are attached on the upper and lower parts of quadriceps and 

gastrocnemius muscle groups. Every signal has a tendency to be assisted as shown in the 

figures below. All magnitudes of the EMG signals have an approximately 20% smaller value 

using KAS than before. This means that the required muscle strength to accompany the 

same task is reduced. Through this research, we discovered that partly assisting or 

supporting the muscle power could be useful for the users’ safety and freedom from labor. 

Even though it was done in a specific and confined condition, that is, minimizing system 

weights and solving independent electrical power system, KAS is going to be a useful 

powered harness for construction workers. 

As mentioned above, this result shows the characteristics of KAS. First, the muscle activity 

of quadriceps femoris is larger than that when not wearing KAS (2~3sec) because of the 

initial state of KAS, which is not activated yet. Second, the signal strength of the 

simultaneous contraction area of quadriceps femoris and the gastrocnemius muscle is 

reduced (4~6sec). Third, in the area of 5~6sec, only the signal of gastrocnemius muscle is 

retained. These changes of EMG pattern can be explained as a continuous change of muscle 

activity pattern which described in Fig.11. As a result, proposed system leads to the 

intentional changes of muscle activity pattern but it is helpful entirely for loaded ascent 

walking. 

www.intechopen.com



Design and Feasibility Verification of a Knee Assistive Exoskeleton System  
for Construction Workers 

 

323 

 

Fig. 16. Gathered EMG Signal without KAS 

 

Fig. 17. Gathered EMG Signal with KAS 
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8. Further studies and future work 

We studied and developed a force augmentation system for upper extremities [21,22]. This 
prototype system is fixed to compensate for self-weight and has 20kg payload per arm. To 
integrate this system with the knee assistive system which we developed, a weight 
compensation system through the spine, hip joint, knee, and angle is obviously required. 
Most importantly, the actuator capacity and control performance of KAS should be 
increased. 
As further work, we are examining two aspects: (1) improving the mechanical structure to 
minimize the system volume and weight, and stabilizing the system operation by human 
intent sensing, and (2) developing the total system which is an integrated lower limb 
exoskeleton with the upper one for whole body augmentation of industrial workers, 
especially construction laborers. 
Fig.18 shows the system integration concept. To integrate the two exoskeleton systems, the 
most important factors to be considered are weight compensation, joint torque enlargement 
of lower limb exoskeleton, and its operation algorithm. To address these requirements 
adequately, many field tests are currently being performed.  
 

 

Fig. 18. System Integration Concept for Whole Body Support 

Fig.19 describes several tests for a specified task using an incomplete system to gather the 
dominant problems for operating the newly integrated system. Case (1) is the heavy 
material carrying task while stepping up the stairs, and Case (2) is heavy material handling 
task while climbing up the slope. 
Fig.20 describes the current status of the newly studied system. As shown in the colored 
area of the load distribution of humans, the mechanical load bearing structure has to be 
established before anything else. 
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(a) Field Test: Case (1) 

 

(b) Field Test: Case (2) 

Fig. 19. Field test using current prototype system (Proposed KAS is part of this system) 
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Fig. 20. Newly Proposed System in this Study and Considerations for adequate final Goal 

A number of studies are performed to overcome the human performance limit. These 
studies, however, encountered several limitations on actuator performance, power source, 
system weight, convenient human-robot interface design, and so on. As described in the 
following diagram, for an adequate design of a force augmenting system for use in an 
industrial setting, we have to consider which type of system is more possible and helpful 
among many types of approaches. 
 

 

Fig. 21. Current Status of the Newly Developed System and Final Goal (REALIVE™ Power 
Assist Device of Matsushita Electric Industrial Co., Ltd., and Powerloader of the movie, 
“Alien II”) 
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