40 research outputs found

    Nitrogen Use Efficiency of Late Fall-Applied Urea and Pig Slurry for Regrowth of Perennial Ryegrass Sward

    Get PDF
    Pig slurry is the most important organic resource in Korea, as estimated to be more than 15% of recycled animal manure. The use of pig slurry as an alternative organic fertilizer is the most viable recycling option as it is produced in large amount on pig farms that has usually less or not surface for cultivation of forage crops in Korea. Perennial grasses in grassland system regrow successively after harvests by cutting or grazing. The regrowth yield at each harvest would be a crucial determinant for the productivity of sward. During vegetative regrowth, soil mineral N and N reserves meet the N requirements for shoot regrowth. The aims of this study are to estimate the N use efficiency of urea and pig slurry applied at late fall in relation to the N availability for restoring organic reserves and constructing ultimate regrowth biomass during successive three cycle of regrowth of perennial ryegrass sward

    Cultivar Variation in Hormonal Balance Is a Significant Determinant of Disease Susceptibility to Xanthomonas campestris pv. campestris in Brassica napus

    No full text
    This study aimed to directly elucidate cultivar variation in disease susceptibility and disease responses in relation to hormonal status in the interaction of Brassica napus cultivars and Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease. Fully expanded leaves of six B. napus cultivars (cvs. Capitol, Youngsan, Saturnin, Colosse, Tamra, and Mosa) were inoculated with Xcc. At 14 days post-inoculation with Xcc, cultivar variation in susceptibility or resistance was interpreted with defense responses as estimated by redox status, defensive metabolites, and expression of phenylpropanoid synthesis-related genes in relation to endogenous hormonal status. Disease susceptibility of six cultivars was distinguished by necrotic lesions in the Xcc-inoculated leaves and characterized concurrently based on the higher increase in reactive oxygen species and lipid peroxidation. Among these cultivars, as the susceptibility was higher, the ratios of abscisic acid (ABA)/jasmonic acid (JA) and salicylic acid (SA)/JA tended to increase with enhanced expression of SA signaling regulatory gene NPR1 and transcriptional factor TGA1 and antagonistic suppression of JA-regulated gene PDF 1.2. In the resistant cultivar (cv. Capitol), accumulation of defensive metabolites with enhanced expression of genes involved in flavonoids (chalcone synthase), proanthocyanidins (anthocyanidin reductase), and hydroxycinnamic acids (ferulate-5-hydroxylase) biosynthesis and higher redox status were observed, whereas the opposite results were obtained for susceptible cultivars (cvs. Mosa and Tamra). These results clearly indicate that cultivar variation in susceptibility to infection by Xcc was determined by enhanced alteration of the SA/JA ratio, as a negative regulator of redox status and phenylpropanoid synthesis in the Brasica napus–Xcc pathosystem

    Do PFT1 and HY5 interact in regulation of sulfate assimilation by light in Arabidopsis?

    Get PDF
    Sulfate assimilation pathway is highly responsive to changes in environment, but the mechanisms of such regulation are only slowly beginning to unravel. Here we show evidence that PHYTOCHROME AND FLOWERING TIME 1 (PFT1) may be another component of the sulfate assimilation regulatory circuit. Transcriptional regulation by light of the key enzyme of sulfate assimilation, adenosine 5' phosphosulfate (APS) reductase, is disturbed in pft1-2 mutants. PFT1, however, affects also APS reductase enzyme activity, flux through the sulfate assimilation pathway and accumulation of glutathione. In addition, our data suggest a possible interplay of PFT1 with another transcription factor, HY5, in regulation of APS reductase by light. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Characterization of vegetative storage protein (VSP) and low molecular proteins induced by water deficit in stolon of white clover

    No full text
    International audienceIn stolon of white clover (Trifolium repens L), the 17.3 kDa protein has been newly identified as a vegetative storage protein (VSP) which has preponderant roles in N accumulation and mobilization to sustain growth when capacity of N uptake is strongly reduced. To characterize the water deficit effect on this protein, the kinetic pattern of soluble protein, SDS-PAGE, Western blotting, and proteomic analysis was studied in the stolon of white clover during 28 days of water-deficit. Water deficit led to decrease protein concentration. SDS-PAGE revealed that two major proteins of 17.3 and 16 kDa were accumulated to high level in response to water stress. These proteins cross-reacted positively with antibodies raised against the 17.3 kDa VSP, a protein which shared biochemical features with stress proteins implied in dehydration tolerance. Using two-dimensional electrophoresis (2-DE) gel and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis, it was demonstrated that 19.5 and 17.3 kDa protein spots were up-regulated by water stress, and both spots were identical to nucleoside diphosphate kinase (NDPK) and lipid transfer proteins (LTPs), respectively. These results suggest that low molecular proteins induced by water-deficit in the stolon of white clover act as an alternative N reserves or play significant roles in plant protection against water-deficit stress. (C) 2013 Elsevier Inc. All rights reserved

    Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward

    No full text
    Objective The study aimed to assess the N use efficiency (NUE) of pig slurry (in comparison with chemical fertilizer) for each regrowth yield and annual herbage production and their nutritive value. Methods Consecutive field experiments were separately performed using a single application with a full dose of N (200 kg N/ha) in 2014 and by four split applications in 2015 in different sites. The experiment consisted of three treatments: i) control plots that received no additional N, ii) chemical fertilizer-N as urea, and iii) pig-slurry-N with five replicates. Results The effect of N fertilization on herbage yield, N recovery in herbage, residual inorganic N in soil, and crude protein were significantly positive. When comparing the NUE between the two N sources (urea and pig slurry), pig slurry was significantly less effective for the earlier two regrowth periods, as shown by lower regrowth dry matter (DM) yield, N amount recovered in herbage, and inorganic N availability in soil at the 1st and 2nd cut compared to those of urea-applied plots. However, the effect of split application of the two N sources was significantly positive at the last two regrowth periods (at the 3rd and 4th cut). The two N sources and/or split application had little or no influence on neutral detergent fiber (NDF) content, acid detergent fiber (ADF) content, and in vitro DM digestibility, whereas cutting date was a large source of variation for these variables, resulting in a significant increase in in vitro DM digestibility for the last two regrowth periods when an increase in NDF and ADF content occurred. Split application of N reduced the N loss via nitrate leaching by 36% on average for the two N sources compared to a single application. Conclusion The pig slurry-N was utilized as efficiently as urea-N for annual herbage yield, with a significant increase in NUE especially for the latter regrowth periods

    Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions

    No full text
    International audienceTo compare the effect of arbuscular mycorrhiza (AM) and P-supplement on N uptake and N assimilation under well-watered or drought-stressed conditions, Glomus intraradices-colonised, P-supplemented non-mycorrhizal (P) and non-mycorrhizal (control) plants of Lolium perenne were exposed to 12 days of water treatment. Leaf water potential (I (w)), photosynthetic ability, and N and P nutritional status were measured at the beginning (day 0) and end (day 12) of water treatment. N absorption, amino acid and protein synthesis were quantified using the isotopic tracer N-15 at day 12. Under well-watered conditions, growth response and physiological parameters were similar in AM and P plants, as compared to controls. Drought (10% water) significantly decreased these parameters in all three treatments. As compared to control plants, the negative impact of water deficit on the I (w), photosynthesis, biomass, and N and P content was highly alleviated in AM plants, while only slightly improved or remained the same level in P plants. The effect of AM symbiosis on N absorption and N assimilation was greater than that of the P supplement under well-watered and drought-stressed conditions, and this effect was highly enhanced under drought-stressed conditions. At terminal drought stress on day 12, the effect of AM colonisation on de novo synthesis of amino acids and proteins was 4.4- and 4.8-fold higher than that of the P supplement. These results indicate that the AM symbiosis plays an integrative role in N nutrition by alleviating the negative impacts of drought on N or P uptake and N assimilation, whereas the efficiency of a direct P supplement is very limited under drought-stressed conditions

    Ethephon-Induced Ethylene Enhances Protein Degradation in Source Leaves, but Its High Endogenous Level Inhibits the Development of Regenerative Organs in Brassica napus

    No full text
    To investigate the regulatory role of ethylene in the source-sink relationship for nitrogen remobilization, short-term effects of treatment with different concentrations (0, 25, 50, and 75 ppm) of ethephon (2-chloroethylphosphonic acid, an ethylene inducing agent) for 10 days (EXP 1) and long-term effects at 20 days (Day 30) after treatment with 100 ppm for 10 days (EXP 2) on protein degradation and amino acid transport in foliar sprayed mature leaves of Brassica napus (cv. Mosa) were determined. In EXP 1, endogenous ethylene concentration gradually increased in response to the treated ethephon concentration, leading to the upregulation of senescence-associated gene 12 (SAG12) expression and downregulation of chlorophyll a/b-binding protein (CAB) expression. Further, the increase in ethylene concentration caused a reduction in protein, Rubisco, and amino acid contents in the mature leaves. However, the activity of protease and expression of amino acid transporter (AAP6), an amino acid transport gene, were not significantly affected or slightly suppressed between the treatments with 50 and 75 ppm. In EXP 2, the enhanced ethylene level reduced photosynthetic pigments, leading to an inhibition of flower development without any pod development. A significant increase in protease activity, confirmed using in-gel staining of protease, was also observed in the ethephon-treated mature leaves. Ethephon application enhanced the expression of four amino acid transporter genes (AAP1, AAP2, AAP4, and AAP6) and the phloem loading of amino acids. Significant correlations between ethylene level, induced by ethephon application, and the descriptive parameters of protein degradation and amino acid transport were revealed. These results indicated that an increase in ethylene upregulated nitrogen remobilization in the mature leaves (source), which was accompanied by an increase in proteolytic activity and amino acid transport, but had no benefit to pod (sink) development
    corecore