196 research outputs found

    Stratification hydrogéochimique et écoulements verticaux dans l'aquifère des calcaires de Beauce (France): Un système anthropisé à forte variabilité spatiale et temporelle

    No full text
    Ary Bruand : Present address ISTO - Institut des Sciences de la Terre d'OrléansInternational audienceDes profils verticaux de températures et de vitesses d'écoulement, ainsi que des prélèvements d'eau réalisés à différentes profondeurs, révèlent une stratification hydrogéochimique de l'aquifère des calcaires de Beauce. Cette stratification, particulièrement nette pour les profils de NO3− et de Cl−, est à relier au développement d'une agriculture intensive. Elle présente une forte variabilité: (i) spatiale, liée à la structure multicouche de l'aquifère et à l'existence de niveaux réducteurs; (ii) temporelle, due à l'existence dans les forages d'un écoulement vertical, dont le sens est lié à l'exploitation périodique de l'aquifère

    Tunable hydrogen release from amine-boranes via their insertion into functional polystyrenes

    Get PDF
    International audiencePolystyrene-g-boramines random copolymers are dihydrogen reservoirs with tunable dehydrogenation temperatures, which can be adjusted by selecting the boramine content in the copolymers. They display a unique dihydrogen thermal release profile, which is a direct consequence of the insertion of the amine-boranes in a polymeric scaffold, and not from a direct modification of the electronics or sterics of the amine-borane function. Finally, the mixture of polystyrene-g-boramines with conventional NH3-BH3 (borazane) allows for a direct access to organic/inorganic hybrid dihydrogen reservoirs with a maximal H2 loading of 8 wt%

    Improvement of the solute transfer in a conceptual unsaturated zone scheme : a case study of the Seine River Basin

    No full text
    International audienceFor predicting the evolution of solute concentrations in groundwater and testing the impact of remediation policies, a coupling between the agronomical model STICS and the hydrogeological model MODCOU was implemented. Applied to the Seine river basin, this model represents accurately the temporal evolution of average nitrate concentrations in the aquifer, but with large local errors. We propose an improvement of the simple unsaturated zone scheme NonsatSW used in STICS-MODCOU. The modifications are based on a comparison with the mechanistic model Metis considered as a reference as it solves Richards'equation. A more realistic saturation profile and a varying percolation rate are integrated in NonsatSW. This new model, named NonsatVG, is assessed by a comparison with NonsatSW and Metis. In an ideal case, NonsatVG generates a solute transfer and a dispersion closer to that of Metis than NonsatSW. In real cases, without additional calibration, NonsatVG and Metis simulate better the average transfer velocities of the observed nitrate profiles. Furthermore, modifications in NonsatVG give a direct link between the water table depth and the saturation profile. We obtain therefore, as in Metis, an evolution of the solute transfer velocity depending on the piezometric level. These dynamics are not simulated in NonsatSW. Despite a modified water transfer through the unsaturated zone, NonsatVG is also as valid as NonsatSW in the modelling of water transfer to the saturated zone. Finally, an application on the Seine basin show that solute transfer velocities are lower with NonsatVG than with NonsatSW, but in better agreement with literature

    Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria

    Get PDF
    International audienceA soil-vegetation-atmosphere transfer model coupled with a macroscale distributed hydrological model was used to simulate the water cycle for a large region in Bulgaria. To do so, an atmospheric forcing was built for two hydrological years (1 October 1995 to 30 September 1997), at an eight km resolution. The impact of the human activities on the rivers (especially hydropower or irrigation) was taken into account. An improvement of the hydrometeorological model was made: for better simulation of summer riverflow, two additional reservoirs were added to simulate the slow component of the runoff. Those reservoirs were calibrated using the observed data of the 1st year, while the 2nd year was used for validation. 56 hydrologic stations and 12 dams were used for the model calibration while 41 river gauges were used for the validation of the model. The results compare well with the daily-observed discharges, with good results obtained over more than 25% of the river gauges. The simulated snow depth was compared to daily measurements at 174 stations and the evolution of the snow water equivalent was validated at 5 sites. The process of melting and refreezing of snow was found to be important in this region. The comparison of the normalized values of simulated versus measured soil moisture showed good correlation. The surface water budget shows large spatial variations due to the elevation influence on the precipitation, soil properties and vegetation variability. An inter-annual difference was observed in the water cycle as the first year was more influenced by Mediterranean climate, while the second year was characterised by continental influence. The energy budget shows a dominating sensible heat component in summer, due to the fact that the water stress limits the evaporation. This study is a first step for the implementation of an operational hydrometeorological model that could be used for real time monitoring and forecasting of water budget components and river flow in Bulgaria

    Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria

    No full text
    International audienceA soil-vegetation-atmosphere transfer model coupled with a macroscale distributed hydrological model was used in order to simulate the water cycle for a large region in Bulgaria. To do so, an atmospheric forcing was built for two hydrological years (1 October 1995 to 30 September 1997), at an eight km resolution. It was based on the data available at the National Institute of Meteorology and Hydrology (NIMH) of Bulgaria. Atmospheric parameters were carefully checked and interpolated with a high level of detail in space and time (3-h step). Comparing computed Penman evapotranspiration versus observed pan evaporation validated the quality of the implemented forcing. The impact of the human activities on the rivers (especially hydropower or irrigation) was taken into account. Some improvements of the hydrometeorological model were made: for better simulation of summer riverflow, two additional reservoirs were added to simulate the slow component of the runoff. Those reservoirs were calibrated using the observed data of the 1st year, while the 2nd year was used for validation. 56 hydrologic stations and 12 dams were used for the model calibration while 41 rivergages were used for the validation of the model. The results compare well with the daily-observed discharges, with good results obtained over more than 25% of the rivergages. The simulated snow depth was compared to daily measurements at 174 stations and the evolution of the snow water equivalent was validated at 5 sites. The process of melting and refreezing of snow was found to be important on this region. The comparison of the normalized values of simulated versus measured soil moisture showed good correlation. The surface water budget shows large spatial variations due to the elevation influence on the precipitations, soil properties and vegetation variability. An inter annual difference was observed in the water cycle as the first year was more influenced by Mediterranean climate, while the second year was characterised by continental influence. Energy budget shows a dominating sensible heat component in summer, due to the fact that the water stress limits the evaporation. This study is a first step for the implementation of an operational hydrometeorological model that could be used for real time monitoring and forecast the water budget and the riverflow of Bulgaria

    Development of an Open-GIS decision aid system for ecological and economical management of surface and groundwater resources in the Bistrita River Basin (Romania)

    No full text
    International audienceThe Bistrita River Basin (a length of 283 km, a surface of 7039 km2, a mean discharge of 65 m3/s) is one of the most important tributary of the Siret River, which is the second major affluent of the Danube River. Heavily influenced by hydraulic management and highly polluted by agricultural and urban activities in some stretches, the Bistrita river has been studied in the framework of the Diminish Project (LIFE03 ENV/ RO/000539), funded by the Life Environment Program. The project aims to support the implementation of the EU Water Framework Directive and to combat the nutrient pollution by developing an integrated, on-line, GIS-based support system for the management of the water quality in relation with human activities, using socio-economical analysis, at the scale of the river catchments. Based on modeling approaches the decisional system allows to predict which strategy will lead to the most effective reduction of nutrient concentrations within the Bistrita hydrological network and of nutrient loads transported by the Siret River into the Danube. The consequences of the nutrient pollution are discussed for two basin areas, from two points of view: i) the effects of point and diffuse pollution for surface and groundwater, on the basis of the basin response to the changing pressures over the river catchments (industrial, rural, urban, agricultural changes), ii) the economical valuation of environmental costs and cost-effectiveness of the measures, that can be proposed from socio-economic scenarios, for reaching the "good ecological status" of this river
    corecore