406 research outputs found

    Measurement of the η\eta -η\eta' mixing angle in π\pi^{-} and KK^{-} beams with GAMS-4π4\pi Setup

    Full text link
    The results of mixing angle measurement for η\eta', η\eta mesons generated in charge exchange reactions with π\pi^{-} and KK^{-} beams are preseneted. When the η\eta', η\eta mesons are described in nonstrange(NS)--strange(S) quark basis the π\pi^{-} and KK^{-} beams allow to study ηq>|\eta_{q}> and ηs>|\eta_{s}> parts of the meson wave function. The cross section ratio at t=0t'=0 (GeV/c)2^{2} in the π\pi^{-} beam is Rπ(η/η)=0.56±0.04R_{\pi}(\eta'/\eta)= 0.56 \pm 0.04, results in mixing angle ϕP=(36.8±1.)o\phi_{P} = (36.8 \pm 1.)^{o} . For KK^{-} beam the ratio is RK(η/η)=1.30±0.16R_{K}(\eta'/\eta)= 1.30 \pm 0.16. It was found that gluonium content in η\eta' is sin2ψG=0.15±0.06\sin^{2}\psi_{G}= 0.15 \pm 0.06. The experiment was carried out with GAMS-4π\pi Setup.Comment: 6 pages, 4 figures, 1 table, to be submitted in European physical journal C. Minor changes, the Bibliography extende

    New mechanism of solution of the kTkT-problem in magnetobiology

    Full text link
    The effect of ultralow-frequency or static magnetic and electric fields on biological processes is of huge interest for researchers due to the resonant change of the intensity of biochemical reactions although the energy in such fields is small. A simplified model to study the effect of the weak magnetic and electrical fields on fluctuation of the random ionic currents in blood and to solve the kBTk_BT problem in magnetobiology is suggested. The analytic expression for the kinetic energy of the molecules dissolved in certain liquid media is obtained. The values of the magnetic field leading to resonant effects in capillaries are estimated. The numerical estimates showed that the resonant values of the energy of molecular in the capillaries and aorta are different: under identical conditions a molecule of the aorta gets 10910^{-9} times less energy than the molecules in blood capillaries. So the capillaries are very sensitive to the resonant effect, with an approach to the resonant value of the magnetic field strength, the average energy of the molecule localized in the capillary is increased by several orders of magnitude as compared to its thermal energy, this value of the energy is sufficient for the deterioration of the chemical bonds.Comment: 10 pages, Accepted to the Journal Central European Journal of Physic

    Molecular gyroscopes and biological effects of weak ELF magnetic fields

    Full text link
    Extremely-low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display `windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10--100 μ\muT do. Linear resonant physical processes do not explain frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those `windows'. It considers quantum-interference effects on protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ1\Gamma^{-1} of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10--100 Hz. In this paper, a biophysical mechanism has been proposed that (i) retains the attractive features of the ion interference mechanism and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyros. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 angstr\"{o}ms.Comment: 10 pages, 7 figure

    Air ions induced aerosol sensing by eye-safe LIDAR

    Full text link
    Low concentrations aerosols quantification is rather challenging for LIDAR instruments due to eye-safety restrictions so high energy pulses cannot be utilized to improve the sensitivity. Highly sensitive but eye-save LIDAR has been developed for the quantification of the water droplet aerosol which was induced by air ions. Few days sensing of aerosols in closed tunnel revealed a strong correlation between air optical transparency (LIDAR measurements) and concentrations of positive/negative ions (ion counter Sapphir 3-M). The correlation coefficient was observed to be almost unity for the air transparency signal and air ions unipolarity coefficient. High sensitivity of the water droplet aerosol quantification makes the developed eye-safe LIDAR a perspective instrument for space resolved measurements of the air ions distribution. Space and time resolved measurements of air ions exhalation can be a new instrument for tectonic activity study including new earthquake forecasting indicators search
    corecore